首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
This study investigates the influence of aggregates, glass fibers and a coupling agent on the compressive and flexural (three-point and four-point bending) behavior of a polyester mortar. Particle size of fine aggregates (quartz and limestone) varied from 0.1 to 5 mm (0.004 to 0.2 inch) and the glass fiber content was varied up to 6% by weight of mortar. A silane was introduced into the polyester mortar by pretreating the aggregates and the glass fibers. The mechanical properties of mortar were studied at room temperature. The test results indicate that the selection of aggregate type, size and distribution is very important. Silane treated aggregate systems showed more than 66% increase in compressive strength and 35% increase in flexural strength when compared to the untreated systems. Addition of glass fibers enhances the strength and toughness of the polyester mortar, and silane treatment of glass fibers helps to further enhance these properties. Flexural (three-point bending)-to-compressive strength ratio varied from 0.28 to 0.35 for unreinforced system and from 0.26 to 0.54 for the reinforced system. The mortar with only 14% polyester and 86% aggregates (by weight) and a coupling agent had a compressive strength of 103 MPa (15,000 psi) which is 94% of the polyester polymer strength. A stress-strain relationship is proposed to represent the complete stress-strain response under compression and flexural loading. Also, a method is proposed to quantify the failure patterns.  相似文献   

2.
Carbon fiber reinforced SiC composite is a kind of promising high-temperature thermal protection structural material owing to the excellent oxidative resistance and superior mechanical properties at high temperatures. In this work, a novel design and fabrication process of lightweight C/SiC corrugated core sandwich panel will be proposed. The compressive and three-point bending of the C/SiC corrugated sandwich panels are conducted by experiment and numerical simulation. The relative density of as-prepared C/SiC sandwich panel and the density composite material are 1.1 and 2.1 g/cm3, respectively. As the density of the C/SiC sandwich panel is only 52.3% of the bulk C/SiC, suggesting that lightweight characteristic is realized. Moreover, the C/SiC sandwich panel manifests itself as linear-elastic behavior before failure in compression and the strength is as high as 15.1 MPa. The failure mode is governed by the core shear failure and panel interlayer cracking. The load capacity under the three-point bending C/SiC composite sandwich panel is 1947.0 N. The main failure behavior is core shear failure. The stress distribution under the compression and three-point bend was simulated by FE analysis, and the results of numerical simulations are in accordance with the experimental results.  相似文献   

3.
采用有机硅柔软剂对国产聚乙烯醇(PVA)纤维进行表面改性,并制备了纤维增强水泥基复合材料(PVA-ECC)。采用扫描电子显微镜研究了有机硅柔软剂改性对PVA纤维表面结构的影响,用三点弯曲试验研究了有机硅柔软剂改性的PVA纤维对PVA-ECC复合材料弯曲性能的影响。研究结果表明:随着有机硅柔软剂含量的增加,PVA-ECC的极限弯曲强度和极限跨中挠度均先增加再减小,当有机硅柔软剂质量分数为7%时,极限弯曲强度和极限跨中挠度达到最大值,分别为5.627 MPa和2.123 mm;用ASTM C1609标准分析PVA-ECC三点弯曲韧性,当有机硅柔软剂质量分数为7%时,弯曲韧性达到最大值。  相似文献   

4.
Abstract

Time-dependent behavior is characteristic of adhesively bonded structureswhen put under constant load (creep). In this study, adhesively bonded beam specimens prepared by adhesively bonding two unidirectional carbon fiber laminated beams were subjected to accelerated three-point bending creep tests. A three-point bending test was selected because of its simplicity and the fact that bending stresses tend to develop in structures under load even if not subjected to direct flexural load. The aim of this study is to predict the long-term behavior and to investigate the long-term creep response of the adhesively bonded composite system. The long-term creep behavior was predicted by time–temperature superposition principle (TTSP) and construction of the master curve at a reference temperature.  相似文献   

5.
The deformation of a heated plastic sheet clamped on two opposite sides subject to sagging under its own weight was examined experimentally and then modeled using two separate one-dimensional approaches based upon cable (membrane) and beam formulations. The cable formulation neglects both bending and shear deformation, but includes a generalized Maxwell viscoelastic constitutive model to capture the time-dependent nature of sheet sag. The resulting equations are integrated using a Runge-Kutta technique and solved via a shooting method. The beam formulation is based upon the Timoshenko theory and thus includes shear deformation along with the flexural contributions. A finite element method is developed from application of the principle of virtual work for the beam written in curvilinear coordinates in order to include the effects of finite deformation. A generalized Maxwell model is again employed to account for the time-dependent material response. In both formulations, the method of reduced variables is used to describe the variation of material response with temperature. The effect of temperature and thermal relaxation is included. The particular case of a styrenic material is discussed in detail.  相似文献   

6.
运用自主研发的双转子连续挤出机探究了掺混工艺对苯乙烯-丙烯腈-丁二烯(ABS)树脂力学性能的影响;借助Polyflow模拟软件分析了掺混工艺对设备混合能力的影响;通过对ABS树脂流变和微观结构的表征,探讨了掺混工艺对橡胶粒子微观形貌的影响。结果表明,随着螺杆转速的增加,设备分散和分布混合能力提高,橡胶粒子的团聚现象减弱,分布均匀性提高,当螺杆转速为400 r/min时,ABS树脂的拉伸强度、弯曲强度、弯曲模量和冲击强度分别提高了16.8 %、15.4 %、30.7 %和7.7 %;当螺杆转速为500 r/min时,在剧烈的剪切作用下,橡胶粒子发生内接枝,导致ABS树脂的力学性能与螺杆转速为400 r/min时的力学性能相比,分别下降了7.6 %、7.5 %、21.8 %和32.6 %。  相似文献   

7.
Creep Behavior of a Sintered Silicon Nitride   总被引:1,自引:0,他引:1  
A commercial sintered silicon nitride has been crept in bending and compression at temperatures of 1100°C to 1400°C. In the as-sintered condition the material contains an amorphous intergranular phase. This phase undergoes partial devitrification as a result of high temperature exposure. Preannealing the material to a stable microstructure has very little effect on the creep properties. Deformation behavior compares well with that predicted from a model for creep due to viscous flow of a non-Newtonian grain boundary phase. In bending, the model predicts an initial constant strain rate at low strains as the intergranular phase is squeezed out from between grains under compression. Samples crept in compression are not expected to have this same initial constant strain rate regime. The model also predicts a strong initial strain rate dependence (in bending) on the initial thickness of the amorphous grain boundary layer. Experimentally this strain rate is not affected by partial grain boundary crystallization, suggesting that partial devitrification does not alter the intergranular film thickness or viscosity. This is supported by transmission electron microscopy, which has shown that crystallization of the intergranular phase occurs largely in the pockets between grains, leaving amorphous films between grains.  相似文献   

8.
The conventional relations for calculating the fracture stresses consider only elastic deformation but ignore viscoelastic and viscoplastic behaviors. Measuring the joining strength of a composite glass sealant-metallic interconnect specimen at solid oxide cell application relevant at high temperatures is a case where such effects can become significant. In the current study, three-point and four-point bending test results were analyzed using the finite element method (FEM) to assess systematic and random errors. It is shown that plastic deformation of the steel interconnect material at high temperature, although having a large effect on the stress distribution in the steel/glass–ceramic/steel specimen, does not cause a significant difference in the FEM-derived true and the standard equation-based analytically derived flexural stress values. It is also observed that even if the viscous flow of the glass–ceramic is considered in the simulations, the samples’ behavior in a realistic testing condition is not biased significantly by inelastic behavior due to the short testing time.  相似文献   

9.
Quasi‐static tensile, out‐of compression, in‐plane compression, three‐point‐bending and shear tests were conducted to reveal the mechanical behavior and failure mechanisms of three‐dimensional (3D) multiaxial warp‐knitted (MWK) carbon/epoxy composites. The characterization of the failure process and deformation analysis is supported by high‐speed camera system and Digital Image Correlation. The results show that tensile, bending, out‐of‐plane compression, in‐plane compression stress–strain response exhibit obvious linear elastic feature and brittle fracture characteristics, whereas the shear response exhibits a distinct nonlinear behavior and gradual damage process. Meanwhile, 3D MWK carbon/epoxy composites have good mechanical properties, which can be widely used in the fields of engineering. In addition, the failure for tension behaves as interlayer delaminating, 90/+45/−45° interface debonding and tensile breakage of 0° fibers; the damage for out‐of‐plane compression is mainly interlaminar shear dislocation together with local buckling and shear fracture of fibers; the failure pattern for in‐plane compression is 90° fiber separating along fiber/matrix interface as well as 0/+45/−45° fiber shear fracture in the shear plane. The main failure for bending is fiber/matrix interface debonding and fibers tearing on the compression surface, 0° fibers breakage on the tension surface as well as fiber layers delaminating. Although the shear behavior is characterized by a gradually growing shear matrix damage, 90/+45/−45° interface debonding, +45/−45° fibers shear fracture, and final 0° fiber compression failure. POLYM. COMPOS., 37:3486–3498, 2016. © 2015 Society of Plastics Engineers  相似文献   

10.
Conventional static flexural strength testing of brittle cylindrical rods only subjects a small fraction of the entire specimen's area or volume to the maximum tensile stress. Thus, a nonconservative measured strength likely results since most flaws on the surface or in the bulk are not subjected to a sufficiently high tensile stress that can cause fracture. To mitigate this, a rotational flexural tester and corresponding test method were developed whereby rotation and monotonically increasing three-point flexure were superimposed to investigate fracture response of solid glass cylinders. This combination of rotation and flexure subjects more area and volume of a cylindrical test specimen to tensile stress than a standard static (nonrotating) flexural test. As anticipated, failure stresses were lower for the rotational flexural test. Expressions for effective area and volume are provided for rotating solid rods and tubes subjected to three-point, four-point, uniform, and uniformly distributed load bending configurations.  相似文献   

11.
The effect of temperature, strain rate, resin content, void content and methods of preparation (vibration and compaction) on the overall flexural behavior of a polyester resin based polymer concrete is studied under three-point bending. The strength and modulus of polyester polymer concrete are relatively independent of strain rate but decrease at varying rates with increase in temperature. Compaction of polymer concrete during preparation reduces the void content and enhances both the flexural strength and modulus. Modifications to composite stiffness models have been proposed to include excess polymer and excess sand phases for systems other than the optimal system. Using a combination of parallel and series models, it is possible to predict the flexural modular ratio and flexural modulus of polymer concrete. Modified tensile strength models are effective in predicting the flexural strength ratio and flexural strength of polymer concrete.  相似文献   

12.
The impact of graphite nanoplatelets (GNPs) on the physical and mechanical properties of cementitious nanocomposites was investigated. A market-available premixed mortar was modified with 0.01% by weight of cement of commercial GNPs characterized by two distinctively different aspect ratios.The rheological behavior of the GNP-modified fresh admixtures was thoroughly evaluated. Hardened cementitious nanocomposites were investigated in terms of density, microstructure (Scanning Electron Microscopy, SEM and micro–Computed Tomography, μ-CT), mechanical properties (three-point bending and compression tests), and physical properties (electrochemical impedance spectroscopy, EIS and thermal conductivity measurements). At 28 days, all GNP-modified mortars showed about 12% increased density. Mortars reinforced with high aspect ratio GNPs exhibited the highest compressive and flexural strength: about 14% and 4% improvements compared to control sample, respectively. Conversely, low aspect ratio GNPs led to cementitious nanocomposites characterized by 36% decreased electrical resistivity combined with 60% increased thermal conductivity with respect to the control sample.  相似文献   

13.
The characterization of Si-B-C-N amorphous ceramics using isothermal compression creep testing in the temperature range of 1200°–1500°C is reported. The deformation rate contains a stress-dependent component that is proportional to the applied stress, which indicates that this portion of the deformation mechanism is based on viscous flow. An increase in the creep resistance is observed, following either preliminary annealing or hot isostatic pressing, which may be explained by a reduction of free volume in the amorphous material. The application of two deformation models that are used to predict similar deformation behavior in metallic glasses also is discussed. Although both models accurately predict the time dependence of the deformation rate of precursor-derived amorphous ceramics, the free-volume model fits the observed temperature dependence better than the "two-step" rearrangement model.  相似文献   

14.
Diamond foils are exceptionally strong yet brittle. One approach to make ceramic foils less susceptible to brittle fracture is to introduce interfaces into the material that provide pathways for crack deflection. In this study, we were able to produce strong yet tough diamond/metal laminates (DMLs) from freestanding diamond foils using a brazing process. The mechanical behavior was characterized via three-point bending (3PB) where the laminates exhibit step-like fracture. Crack deflection at interfaces induces toughening within the laminates. At approx. 3.0 MJ/m3 diamond/metal laminates exhibit more than twice the fracture energy of monolithic diamond foils while maintaining 90 % stiffness and about 70 % nominal strength. Classical laminate theory (CLT) supports the assessment of the deformation behavior and step-like fracture of diamond/metal laminates. We find that the diamond-to-metal interface plays a critical role: it must be strong enough to enable the transfer of shear stress, while being weak enough to deflect a crack.  相似文献   

15.
以回收聚对苯二甲酸乙二醇(酯rPET)为基体材料,丙烯腈-丁二烯-苯乙烯共聚(物ABS)为增强材料,甲基丙烯酸缩水甘油酯接枝聚苯乙烯(PS-g-GMA)为增容剂,制备了rPET/ABS共混物。采用SEM、DSC等方法对共混物的形态结构、结晶性能和力学性能进行了表征。结果表明:与纯rPET相比,ABS增韧后的rPET缺口冲击强度和断裂伸长率分别提高了54.0%和47.2%,弯曲强度和拉伸强度略有下降,熔融温度下降了1.27℃,结晶温度升高了31.22℃,结晶速度明显加快;PS-g-GMA的加入改善了rPET/ABS共混物的两相界面结合力,细化了两相结构;与纯rPET相比,含1%PS-g-GMA的rPET/PS-g-GMA/ABS共混物的缺口冲击强度提高了72.5%断,裂伸长率提高了71.7%。  相似文献   

16.
Aspect ratio (shape) of the filler is one of the key factors which play a vital role in determining the properties of the composites. Fillers like talc and calcium carbonate (CaCO3) have different aspect ratios and affect the properties differently. This study was carried out to investigate the effect of aspect ratio of the filler on the properties of the acrylonitrile butadiene styrene (ABS) polymer. The rheological, mechanical, thermal properties, and fracture morphology were studied for the ABS composites filled with talc and CaCO3 at various filler loading. Coupling agent was added to improve the interfacial adhesion between the filler and the ABS matrix. The aspect ratio of fillers affected the flow behavior at lower shear rate, and was insignificant at higher shear rates. The flow‐induced morphology was more effective in case of talc giving a significant increase in the bending modulus. Tensile and flexural strength showed a slight decrease in the values with talc showing better performance as compared to CaCO3. The reverse was observed in case of impact strength, with CaCO3 showing lower drop in the values. Aspect ratio of filler had no significant effect on the thermal properties of the composites. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46023.  相似文献   

17.
设计并制作了3根新型的玄武岩纤维增强塑料筋(BFRP筋)增强混凝土梁,并对其进行三分点加载试验和有限元分析。结果表明,BFRP筋混凝土梁的受弯破坏形态有别于传统的钢筋混凝土梁,其破坏截面均位于加载点附近。梁内的销栓作用对BFRP筋的受力非常不利;较大的裂缝宽度不仅会影响到BFRP筋混凝土梁的正常使用,还会影响到梁的受弯破坏形态;BFRP筋突出的表面变形特征、较低的横向抗剪强度和弹性模量等对上述破坏形态的发生有着重要影响;加载点处BFRP筋混凝土较为严重的局部黏结破坏、较大的销栓作用、应力集中效应和较大的裂缝宽度等使BFRP筋处于复杂的不利受力状态,这是造成上述破坏形态的主要原因。  相似文献   

18.
The present work was aimed at providing basic mechanical property characterization of five different sheet molding compound (SMC) materials with glass content varying from 30 to 65 percent by weight. In particular, the objectives were to find variation in their tensile, flexural, and shear properties along with some information on fabrication-induced anisotropy that may be present in these materials. The flexural properties were measured using three-point bend tests, and double-rail shear tests were conducted for in-plane shear properties. A significant scatter was observed in all the properties, and no conclusive evidence about the fabrication-induced anisotropy was found, Flexural strength of each material was found to be significantly greater than the tensile strength. Finally, some interesting features associated with their tensile and flexural failure modes have also been discussed.  相似文献   

19.
The large strain deformation behaviors of an ethylene methacrylic acid (EMAA) copolymer and an ethylene methacrylic acid butyl acrylate (EMAABA) copolymer are evaluated and compared in compression over nearly eight orders of magnitude in strain rate, from 10−4 to almost 104/s. Transition regimes are quantified using dynamic mechanical analysis. The stress-strain behavior of these copolymers exhibits a relatively stiff initial behavior followed by a rollover to a more compliant response. The low strain modulus, the rollover stress and the large deformation stress-strain behavior are strongly dependent on strain rate. The proximity of the material glass transition to the room temperature test conditions results in a substantial change in the nature of the rate sensitivity of the stress-strain behavior as one moves over the range of strain rates. The mechanical behavior of the EMAA is contrasted to that of a corresponding EMAABA terpolymer and to its sodium-neutralized counterpart (EMAABANa). The nature of the rate sensitivity of the room temperature stress-strain behavior of EMAA transitions from a behavior near the glassy end of the leathery regime at low rates to a near glassy behavior at high rates. The butyl acrylate content in the EMAABA lowers the glass transition temperature and leads to a more compliant mechanical behavior (reduced initial stiffness, reduced rollover stress, reduced post-rollover stress level) at room temperature. The EMAABA behavior transitions from a rubbery-like behavior at the lowest rates to a leathery-like behavior at the highest rates. Upon sodium neutralization, the overall stiffness and flow stress levels are enhanced likely due to the presence of the ionic aggregates; the glass transition of EMAABANa is broadened in comparison to the EMAABA, giving a rate dependent room temperature behavior that transitions through the leathery regime with increasing strain rate. A constitutive model that separately accounts for the distinct deformation resistances of the crystalline domains and the amorphous domains is able to capture the changes in rate dependent deformation behavior of the EMAA copolymers studied herein. The crystalline domains provide resistance to flow across a wide window in rate and temperature whereas the amorphous domains provide increasing resistance as the strain rate is increased and the material effectively transitions through the glass transition regime, providing a mechanism for changing rate sensitivity.  相似文献   

20.
新型泡沫铝三明治板的弯曲性能   总被引:5,自引:0,他引:5  
采用复合轧制方法制备界面为冶金结合的泡沫铝三明治. 通过对制备出的泡沫铝三明治进行三点抗弯实验验证界面的结合性和整体的抗弯性. 对载荷-位移曲线进行分析,讨论两种不同孔隙率的三明治板的变形行为,结果表明二者明显不同. 低孔隙率(58.81%)的三明治板的抗弯强度和弯曲弹性模量比高孔隙率(76.21%)的大,而高孔隙率的三明治板的断裂吸收能和断裂挠度比低孔隙率的大. 实验结果对今后泡沫铝三明治板的设计有实际指导意义.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号