首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Polymer》2014,55(26):6896-6905
Carbon nanotube (CNT) can exhibit electrical conductivity and introduce electric current into polymer. Using dry-jet-wet spin technology, polyacrylonitrile (PAN)/CNT composite fibers with 15 wt% and 20 wt% of CNT content were fabricated. The electrical conductivity of PAN/CNT fibers was enhanced by the annealing process at different temperatures and changed with time. These fibers could also respond to stretching, and the electrical conductivity decreased by 50% when the elongation reached 3%. In addition, electrical current can induce Joule heating effect and thermally transform PAN/CNT composite fibers. With the application of various electrical currents up to 7 mA at a fixed length, conductivity was enhanced from around 25 S/m to higher than 800 S/m, and composite fibers were stabilized in air. The temperature of composite fibers can increase from room temperature to several hundreds of degree Celsius measured by an infra-red (IR) microscope. Joule heating effect can also be estimated according to one-dimensional steady-state heat transfer equation, which reveals the temperature can be high enough to stabilize or carbonize fibers. As a result, this research provides a new idea of heating fabrics for thermal regulation, and a new approach for stabilizing and carbonizing PAN-based carbon fibers.  相似文献   

2.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (CNT) based carbon fibers at various CNT content have been processed and their structural development was investigated using high resolution transmission electron microscope (HR-TEM). In CNT containing carbon fibers, the CNTs act as templating agents for the graphitic carbon structure development in their vicinity at the carbonization temperature of 1450 °C, which is far below the graphitization temperature of PAN based carbon fiber (>2200 °C). The addition of 1 wt% CNT in the gel spun precursor fiber results in carbon fibers with a 68% higher thermal conductivity when compared to the control gel spun PAN based carbon fiber, and a 103% and 146% increase over commercially available IM7 and T300 carbon fibers, respectively. The electrical conductivity of the gel spun PAN/CNT based carbon fibers also showed improvement over the investigated commercially available carbon fibers. Increases in thermal and electrical conductivities are attributed to the formation of the highly ordered graphitic structure observed in the HR-TEM images. Direct observation of the graphitic structure, along with improved transport properties in the PAN/CNT based carbon fiber suggest new applications for these materials.  相似文献   

3.
The morphologies and properties of Polystyrene (PS)/Carbon Nanotube (CNT) conductive electrospun mat were studied in this paper. Nanocomposite fibers were obtained through electrospinning of PS/Di-Methyl Formamide (DMF) solution containing different concentrations and types of CNTs. The dispersion condition of CNTs was correlated to morphologies and properties of nanocomposite fibers. A copolymer as an interfacial agent (SBS, Styrene-butadiene-styrene type) was used to modify the dispersion of CNTs in PS solution before electrospinning. The results showed that the presence of the copolymer significantly enhances CNT dispersion. The fiber diameters varied between 200 nm and 800 nm depending on CNT type, polymer concentration and copolymer. The final morphological study of the fibers showed that CNT addition caused a decrease in beads formation along fiber axis before percolation threshold. However, addition of CNTs above percolation increased the beads formation, depending on the dispersion condition. The presence of SBS modified the dispersion, reduced the fiber diameter and the number of bead structures. Electrical conductivity measurements on nanocomposite mats of 15-300 μm in thickness showed an electrical percolation threshold around 4 wt% MWCNT; while the samples containing SBS showed higher values of conductivities below percolation compared to the samples with no compatibilizer. Enhancement in mechanical properties was observed by the addition of CNTs at concentrations below percolation.  相似文献   

4.
Peng Cheng Ma  Jang-Kyo Kim 《Carbon》2008,46(11):1497-1505
A simple approach to decorate carbon nanotube (CNT) with silver nanoparticles (Ag-NPs) was developed to enhance the electrical conductivity of CNT. CNTs were functionalized using ball milling in the presence of ammonium bicarbonate, followed by reduction of silver ions in N, N-dimethylformamide, producing silver decorated CNTs (Ag@CNTs). The Ag@CNTs were employed as conducting filler in epoxy resin to fabricate electrically conducting polymer composites. The electrical, thermal and mechanical properties of the composites were measured and compared with those containing pristine and functionalized CNTs. It was found that when pH was about six, highly dispersed Ag-NPs can be decorated on functionalized CNTs. The electrical conductivity of composites containing 0.10 wt% of Ag@CNTs was more than four orders of magnitude higher than those containing same content of pristine and functionalized CNTs, confirming the advantage of the Ag@CNTs as effective conducting filler. The ameliorating effect of improved electrical conductivity was not at the expense of thermal or mechanical properties.  相似文献   

5.
Thermoelectric (TE) structures based on energy harvesting technology have played a vital role in wide-reaching applications. In this study, a composite structure consisting of a glass fabric covered with a nanocomposite membrane (polyacrylonitrile [PAN]/carbon nanotube [CNT]/copper oxide nanoparticle [CuO]) was prepared to provide thermoelectric conversion. The performance of the TE composite structure was evaluated by analyzing the mechanical properties, thermoelectric properties, and the ability of the structure to power small electronic equipment. The results showed that the nanocomposite membrane was effective in improving the electrical properties, whereas the glass fabric could significantly suppress the thermal conductivity. The results suggest that the glass fabric covered with nanocomposite fibers containing nanofillers (15 wt% CNT & 15 wt% CuO) has a high potential to enhance the resistance against external force by 56% on average, compared to the uncovered glass fabric. Besides the power factor of the TE composite structure can reach up to 19.61 μW m−1 K−2, which can power an output voltage of 3.2 V at a temperature difference from 20 to 80°C.  相似文献   

6.
采用碳纤维(CF)和碳纳米管(CNT)通过模压工艺制备出具有电磁屏蔽功能的丙烯酸酯木塑复合材料。借助材料试验机、动态热机械分析仪、微欧计和电磁屏蔽测量仪等详细研究CNT质量分数对丙烯酸酯木塑复合材料弯曲性能、动态力学性能、电阻率和电磁屏蔽效能的影响。结果表明,添加质量分数为2%的CNT,使得复合材料的弯曲强度和弯曲弹性模量分别增加了10%和16%。复合材料的储能模量也在CNT质量分数为2%时达到最大值,之后储能模量随着CNT的增加而逐渐下降,损耗因子在CNT质量分数多于2%时也逐渐增加。复合材料的吸水率和导电性能随着CNT含量的增加而增加。同时复合材料的电磁屏蔽效能也随着CNT含量增加而递增。在30~1 500 MHz范围内,电磁屏蔽效能从27 d B增加到40 d B。结果证明,当CNT质量分数在2%时,丙烯酸酯木塑复合材料具有较佳的力学性能和较好的电磁屏蔽效能(30 d B),能满足商业要求。  相似文献   

7.
Ying-Ling Liu  Yu-Hsun Chang 《Polymer》2008,49(25):5405-5409
Poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) multi-bonded carbon nanotube (CNT) (CNT-PPO) was prepared using brominated PPO under the condition of atom transfer radical polymerization. The structure and properties of CNT-PPO were characterized with FTIR, Raman spectroscopy and thermal analyzer. The PPO layer in a thickness of about 4.5 nm was observed covering on the side wall of CNT with a high-resolution TEM. The PPO modification warrants the good dispersion of CNTs in PPO in the formation of PPO/CNT nanocomposites, which demonstrated enhanced mechanical properties and increases in electrical conductivity. The developed approach of CNT modification with engineering plastics can be applied to other polymers and preparation of functional polymer/CNT nanocomposites.  相似文献   

8.
《Ceramics International》2016,42(5):5792-5801
Several composites of tetragonal zirconia polycrystals doped with 3 mol% yttria (3Y-TZP) and multiwalled carbon nanotubes (MWCNT) with concentrations from 0.5 to 4 wt% CNT were processed, spark plasma sintered, and characterised for a wide range of mechanical, electrical and thermal properties. In particular, a strong increase in electrical conductivity at room temperature was found with only 0.5 wt% CNT. However, the thermal conductivity was decreasing with increasing CNT content. Electrical discharge machining (EDM) using die sinking was carried out using the composites of 1 and 2 wt% CNT as workpieces. It was shown that both compositions could be successfully machined by EDM. The surface integrity and the subsurface were studied by SEM/FIB in order to determine the material removal mechanisms, which were found to be associated to spalling and melting/evaporation. Raman Spectroscopy was used to evaluate the damage of CNTs after EDM.  相似文献   

9.
The effect of carbon fiber (CF) modification with multiwall carbon nanotube (CNT) on the electrical, mechanical, and rheological properties of the polycarbonate (PC)/CF/CNT composite was investigated. The CF and multiwall CNT (MWCNT) were treated with sulfuric acid and nitric acid (3:1 wt %) mixture, to modify the CF with the CNT. For the PC with acid-treated CNT (a-CNT) modified acid-treated CF (a-CF) (PC/a-CF/a-CNT) composite, the electrical conductivity, and the electromagnetic interference shielding effectiveness (EMI SE) showed the highest values, compared with those of the PC/a-CF and PC/a-CF/CNT composites. The EMI SE of the PC/a-CF (10 wt %)/a-CNT (0.5 wt %) composite was found to be 26 (dB at the frequency of 10.0 GHz, and the EMI SE was increased by 91.2%, compared to that of the PC/a-CF composite at the same amount of total filler content. Among the composites studied in this work, the PC/a-CF/a-CNT composite also showed the highest values of relative permittivity (εr) and dielectric loss factor. The above results suggest that the CF modification with the a-CNT significantly affected the electrical conductivity and EMI SE of the composite, and the hybrid fillers of the a-CNT and a-CF resulted in good electrical pathways in the PC/a-CF/a-CNT composite. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47302.  相似文献   

10.
To synthesize carbon nanotube/carbon matrix (CNT/C) composites rivaling or exceeding the mechanical and electrical properties of current carbon fiber/carbon matrix composites, it is essential to align carbon nanotubes in the composite. In this work, we fabricated CNT/polyacrylonitrile (PAN) precursor composites with high degree of CNT alignment, and carbonized and graphitized them at high temperatures. Carbonizing the precursor composites significantly improved their elastic modulus, strength, and electrical conductivity. The matrix was uniformly carbonized and highly graphitized. The excellent mechanical and electrical properties make the CNT/C composites promising for many high temperature aerospace applications.  相似文献   

11.
Polyacrylonitrile (PAN) and PAN/carbon nanotube (PAN/CNT) fibers were manufactured through dry‐jet wet spinning and gel spinning. Fiber coagulation occurred in a solvent‐free or solvent/nonsolvent coagulation bath mixture with temperatures ranging from ?50 to 25°C. The effect of fiber processing conditions was studied to understand their effect on the as‐spun fiber cross‐sectional shape, as well as the as‐spun fiber morphology. Increased coagulation bath temperature and a higher concentration of solvent in the coagulation bath medium resulted in more circular fibers and smoother fiber surface. as‐spun fibers were then drawn to investigate the relationship between as‐spun fiber processing conditions and the drawn precursor fiber structure and mechanical properties. PAN precursor fiber tows were then stabilized and carbonized in a continuous process for the manufacture of PAN based carbon fibers. Carbon fibers with tensile strengths as high as 5.8 GPa and tensile modulus as high as 375 GPa were produced. The highest strength PAN based carbon fibers were manufactured from as‐spun fibers with an irregular cross‐sectional shape produced using a ?50°C methanol coagulation bath, and exhibited a 61% increase in carbon fiber tensile strength as compared to the carbon fibers manufactured with a circular cross‐section. POLYM. ENG. SCI., 55:2603–2614, 2015. © 2015 Society of Plastics Engineers  相似文献   

12.
Composites of polypropylene (PP) filled with multiwalled carbon nanotubes (CNTs) of various concentrations were prepared by a twin screw extruder using direct compounding (DC) method without and with ultrasonic treatment. In addition, a masterbatch of 20 wt% PP/CNT composites were prepared without and with ultrasonic treatment and diluted to the same concentrations as in the DC method without ultrasonic treatment. This is called the masterbatch dilution (MD) method. The rheological, electrical and mechanical properties were investigated. The microdispersion was determined using optical microscopy to correlate the processing, properties and structure. It was shown that the MD method provided better dispersion of CNT in PP matrix than the DC method. This was indicated by an increase of the storage modulus, viscosity, electrical and mechanical properties. The fractal dimension of CNTs, D, and the backbone fractal dimension, x, of the CNT network were determined by fitting the rheological data to the scaling model. The lower fractal dimension of CNT and higher backbone fractal dimension of CNT network in composites prepared by the MD method compared with composites obtained by the DC method indicated a better dispersion. Additionally, a lower D and a higher x values as well as the favorable effect on the morphology and mechanical properties were achieved when the ultrasonic treatment at an amplitude of 13 μm was applied in the MD method, indicating an advantage in use of the ultrasonic treatment in preparing the PP/CNT masterbatch.  相似文献   

13.
The multi-walled carbon nanotube (CNT)-embedded activated carbon nanofibers (ACNF/CNT) and activated carbon nanofibers (ACNF) were prepared by stabilizing and activating the non-woven web of polyacrilonitrile (PAN) or PAN/CNT prepared by electrospinning. Both ACNF and ACNF/CNT were partially aligned along the winding direction of the drum winder. The average diameter of ACNF was 330 nm, while that of ACNF/CNT was lowered to 230 nm with rough surface. This was attributed to the CNT-added polymer solution in the electrospinning process providing finer fibers by increasing the electrical conductivity compared with the CNT-free one. The specific surface area and electrical conductivity of ACNF were 984 m2/g and 0.42 S/cm, respectively, while those of ACNF/CNT were 1170 m2/g and 0.98 S/cm, respectively. PPy was coated on the electrospun ACNF/CNT (PPy/ACNF/CNT) by in situ chemical polymerization in order to improve the electrochemical performance. The capacitances of the ACNF and PPy/ACNF electrodes were 141 and 261 F/g at 1 mA/cm2, respectively, whereas that of PPy/ACNF/CNT was 333 F/g. This improvement in capacitance was attributed to the following: (i) the preparation of aligned nano-sized ACNF/CNT by electrospinning and the addition of CNT and (ii) the formation of a good charge-transfer complex by the PPy coating on the surface of the aligned nano-sized ACNF/CNT. The former leads to a good morphology and superior properties, such as a higher surface area, the formation of mesopores and an increase in electrical conductivity. The latter offers a refined three-dimensional network due to the highly porous structure between ACNF/CNT and PPy.  相似文献   

14.
SiC ceramic is an excellent infrared source material that can be used in a wide range of fields, like infrared heating, night vision and communication, but its poor electrical properties limit it. In this work, carbon nanotubes (CNTs) were selected as conductive phase filler, and SiC-CNT composite ceramics were prepared by SPS method. The effects of CNT content on the microstructures, electrical properties and infrared radiation performance of the composites were studied. The introduction of CNT effectively reduced the height of Schottky barrier at grain boundary, thus weakening the grain boundary effect, reducing the grain boundary resistance, further weakening the nonlinear characteristics and bulk resistivity of the composite ceramics. When the content of CNT was 1 wt%, electrical percolation was achieved, and the bulk resistivity of SiC ceramics dropped by nearly 3 orders of magnitude. The preferred orientation distribution of CNT made the bulk resistivity perpendicular to the pressure direction R always lower than that parallel to the pressure direction R//. The sample with 5 wt% CNT assumed linear conductivity characteristics, with bulk resistivity in different direction of 16.5 Ω cm (R//) and 11.8 Ω cm (R), respectively. CNT addition slightly increased the infrared radiation performance of SiC ceramics, and the sample with 5 wt% CNT possessed the highest total emissivity of 0.675. The excellent electrical conductivity and infrared radiation performance of SiC-CNT composite ceramic confirmed this class as a promising infrared source material.  相似文献   

15.
The effect of NaSCN salt on the spinnability of polyacrylonitrile (PAN) solutions, its resulting morphology, mechanical property, and the flame resistance of the resulting electrospun nanofibers were studied. The intent was to develop a method to produce nanosized carbon fiber precursors with good properties. Electrospun PAN nanofibers from 9.7–9.9 wt% PAN/sodiumthiocyanate (NaSCN) (aq)/Dimethylformamide (DMF) solutions with 1.0–2.9 wt% NaSCN (aq), and 10–15 wt% PAN/DMF solutions without salt exhibited good spinnability and morphology with no beading in the range of applied voltage (18–20 kV) and take‐up velocity (9.8–12.3 m/s). The relatively high take‐up velocity produced good yarn alignment. The diameter distributions of the PAN nanofibers containing the NaSCN salt were narrower than those of the PAN/DMF nanofibers without the salt. It was determined that the maximum content of salt for production of electrospun PAN nanofibers with good morphology was below 3.8 wt% (40 wt% based on PAN). The salt concentration can positively influence on the narrow diameter distributions of the resulting electrospun fibers. Also, it could be confirmed that the salt effect on mechanical property and flame resistance of electrospun PAN nanofibers. In particular, the elongation of the PAN nanofiber with 2.9 wt% NaSCN (aq) was significantly increased as much as 186% compared with that of 10 wt% PAN nanofiber without the salt. The flame resistance and mechanical properties of the stabilized PAN nanofibers with NaSCN (aq) increased after oxidization process. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers.  相似文献   

16.
Significant progress has been made in recent years in research on wet spinning and hydrothermal synthesis of graphene fibers. In this paper, we report the relationship between the mechanical performance of graphene oxide (GO) fibers and their processing parameters in wet spinning. With super-aligned carbon nanotube (CNT) film wrapping, the specific strength and electrical conductivity of reduced GO (rGO) fibers were simultaneously enhanced by 22% and 49%, respectively. Thicker CNT film wrapping of the rGO fiber induces a core–sheath structure; the resulting interfacial debonding and slippage under fiber axial loading were examined. The findings of this study provide guidelines for optimization of high-performance graphene/CNT hybrid fibers.  相似文献   

17.
With the aim of the development of conductive and mechanically improved adhesives, carbon nanotubes (CNTs) were dispersed by melt mixing into a non-reactive polyolefine based hotmelt adhesive. The composite materials, containing 0.5 to 5.0 wt% multi-walled CNTs (MWNTs), showed electrical percolation at about 0.75 wt%. Investigations of the mechanical properties using tensile tests resulted in a significant enhancement of Young's modulus up to 372% and nearly doubling of tensile strength at 5.0 wt%. Even if the hotmelt material is highly elastic compared to typical thermoplastic matrices, the melt mixing resulted in suitable CNT dispersion. The melt viscosity increased with CNT loading, however near the observed electrical percolation threshold the processability was not notably reduced. Most important, next to conductivity at low CNT loadings, also a significant enhancement in the shear strength of bonded joints of AlMg3 up to values of 250% of the pure hotmelt could be obtained. The property profile can be tailored with CNT concentration, indicating the suitability of CNT addition into these hotmelt adhesives.  相似文献   

18.
Conducting polymer composites constituted by co-continuous poly (vinylidene fluoride) (PVDF)/ ethylene- vinyl acetate copolymer (EVA) blends with multiwalled carbon nanotube (CNT) were prepared by melt mixing using different procedures. The effect of the master batch approach on the conductivity, morphology, mechanical, thermal and rheological properties of PVDF/EVA/CNT nanocomposites was compared with that based on one step mixing strategy. The selective extraction experiments revealed that CNT was preferentially localized in the EVA phase in all situations, even when PVDF@CNT master batch was employed. Nanocomposites prepared with EVA@CNT master batch displayed higher conductivity, whose value reached around 10−1 S m−1 with the addition of 0.56 vol% of CNT. The better electrical performance was attributed to the better distribution of the filler, as indicated by transmission electron microscopy and rheological behavior. The electrical and rheological behavior were also investigated as a function of the CNT content.  相似文献   

19.
Shape memory nanocomposite hydrogels are intelligent soft materials in which, the nanoparticles can impart desirable mechanical properties to the polymeric matrix. The main challenge is the capability to program from permanent to temporary shapes and vice versa under the direct and indirect thermal stimuli. In this work, carbon nanotubes (CNT) with a high modulus of 1 TPa, was used to mechanically reinforce polyvinyl alcohol (PVA) and polyvinyl alcohol/chitosan (PVA/Cs) hydrogel networks. Adding appropriate amount of conductor component enables the system to be electrically activated, which leads to achieving the original permanent shape without applying mechanical external force. The PVA/Cs/CNT hydrogel containing 0.25 wt% of CNT, showed electrical conductivity greater than 9 mS cm−1. Because of the presence of CNT, the shape memory behavior of PVA and PVA/Cs hydrogels was improved by 170 and 260%, respectively. The electroactive shape memory nanocomposite hydrogels exhibited complete recovery under indirect stimulation by generating Joule heating in the system.  相似文献   

20.
The dispersion and stability of carbon nanotubes (CNTs) inside a polymer matrix, especially with a high CNT content, are still big challenges. Moreover, the interaction between CNTs and the polymer matrix should be strong enough to improve the mechanical properties. The efficient dispersion of CNTs is essential for the formation of a uniform distribution of a CNT network in a polymer composite. Polyimide/multiwall CNT nanocomposites were synthesized by in situ polymerization with the aid of a surfactant. A Fourier transform infrared spectroscopy study proved that the surfactant did not hamper the polymerization of the polyimide. The microstructure, storage modulus and electrical conductivity of the nanocomposites were improved using a particular amount of the surfactant. Environmental stability test results showed that the polyimide with 1 wt% of CNTs produced with the aid of the surfactant possessed excellent reliability in high‐temperature and high‐humidity environments. Surfactants were successfully used to obtain fine‐structure polyimide/CNT nanocomposites by in situ polymerization. The enhancement of the mechanical properties was attributed to the incorporation of the surfactant. A percolation of electrical conductivity could be achieved with 1 wt% of CNTs. Copyright © 2010 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号