首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study compared measured gas production (GP) and computed CH4 production values provided by closed or vented bottles connected to gas collection bags. Two forages and 3 concentrates were incubated. Two incubations were conducted, where the 5 feeds were tested in 3 replicates in closed or vented bottles, plus 4 blanks, for a total of 64 bottles. Half of the bottles were not vented, and the others were vented at a fixed pressure (6.8 kPa) and gas was collected into one gas collection bag connected to each bottle. Each bottle (317 mL) was filled with 0.4000 ± 0.0010 g of feed sample and 60 mL of buffered rumen fluid (headspace volume = 257 mL) and incubated at 39.0°C for 24 h. At 24 h, gas samples were collected from the headspace of closed bottles or from headspace and bags of vented bottles and analyzed for CH4 concentration. Volumes of GP at 24 h were corrected for the gas dissolved in the fermentation fluid, according to Henry’s law of gas solubility. Methane concentration (mL/100 mL of GP) was measured and CH4 production (mL/g of incubated DM) was computed using corrected or uncorrected GP values. Data were analyzed for the effect of venting technique (T), feed (F), interaction between venting technique and feed (T × F), and incubation run as a random factor. Closed bottles provided lower uncorrected GP (−18%) compared with vented bottles, especially for concentrates. Correction for dissolved gas reduced but did not remove differences between techniques, and closed bottles (+25 mL of gas/g of incubated DM) had a greater magnitude of variation than did vented bottles (+1 mL of gas/g of incubated DM). Feeds differed in uncorrected and corrected GP, but the ranking was the same for the 2 techniques. The T × F interaction influenced uncorrected GP values, but this effect disappeared after correction. Closed bottles provided uncorrected CH4 concentrations 23% greater than that of vented bottles. Correction reduced but did not remove this difference. Methane concentration was influenced by feed but not by the T × F interaction. Corrected CH4 production was influenced by feed, but not by venting technique or the T × F interaction. Closed bottles provide good measurements of CH4 production but not of GP. Venting of bottles at low pressure permits a reliable evaluation of total GP and CH4 production.  相似文献   

2.
3.
4.
Ginkgo fruit, an unused byproduct of the ginkgo nut industry, contains antimicrobial compounds known as anacardic acids. Two major cultivars of ginkgo, Kyuju (K) and Tokuro (T), were evaluated for their potential as a feed additive for ruminants. In batch culture, we incubated a mixture of hay and concentrate in diluted rumen fluid with or without 1.6% (fruit equivalent) ginkgo fruit extract. We conducted another series of batch culture studies to determine the dose response of fermentation. We also conducted continuous culture using the rumen simulation technique (RUSITEC) with cultivar K and carried out a pure culture study to monitor the sensitivity of 17 representative rumen bacterial species to ginkgo extract and component phenolics. Although both K and T extracts led to decreased methane and increased propionate production, changes were more apparent with K extract, and were dose-dependent. Total gas production was depressed at doses ≥3.2%, suggesting that 1.6% was the optimal supplementation level. In RUSITEC fermentation supplemented with 1.6% ginkgo K, methane decreased by 53% without affecting total gas or total VFA production, but with decreased acetate and increased propionate. Disappearance of dry matter, neutral detergent fiber, and acid detergent fiber were not affected by ginkgo, but ammonia levels were decreased. Quantitative PCR indicated that the abundance of protozoa, fungi, methanogens, and bacteria related to hydrogen and formate production decreased, but the abundance of bacteria related to propionate production increased. MiSeq analysis (Illumina Inc., San Diego, CA) confirmed these bacterial changes and identified archaeal community changes, including a decrease in Methanobrevibacter and Methanomassiliicoccaceae and an increase in Methanoplanus. Pure culture study results supported the findings for the above bacterial community changes. These results demonstrate that ginkgo fruit can modulate rumen fermentation toward methane mitigation and propionate enhancement via microbial selection.  相似文献   

5.
《Journal of dairy science》2023,106(7):4608-4621
The aim of this trial was to determine the effect of a garlic and citrus extract supplement (GCE) on the performance, rumen fermentation, methane emissions, and rumen microbiome of dairy cows. Fourteen multiparous Nordic Red cows in mid-lactation from the research herd of Luke (Jokioinen, Finland) were allocated to 7 blocks in a complete randomized block design based on body weight, days in milk, dry matter intake (DMI), and milk yield. Animals within each block were randomly allocated to a diet with or without GCE. The experimental period for each block of cows (one for each of the control and GCE groups) consisted of 14 d of adaptation followed by 4 d of methane measurements inside the open circuit respiration chambers, with the first day being considered as acclimatization. Data were analyzed using the GLM procedure of SAS (SAS Institute Inc.). Methane production (g/d) and methane intensity (g/kg of energy-corrected milk) were lower by 10.3 and 11.7%, respectively, and methane yield (g/kg of DMI) tended to be lower by 9.7% in cows fed GCE compared with the control. Dry matter intake, milk production, and milk composition were similar between treatments. Rumen pH and total volatile fatty acid concentrations in rumen fluid were similar, whereas GCE tended to increase molar propionate concentration and decrease the molar ratio of acetate to propionate. Supplementation with GCE resulted in greater abundance of Succinivibrionaceae, which was associated with reduced methane. The relative abundance of the strict anaerobic Methanobrevibacter genus was reduced by GCE. The change in microbial community and rumen propionate proportion may explain the decrease in enteric methane emissions. In conclusion, feeding GCE to dairy cows for 18 d modified rumen fermentation and microbiota, leading to reduced methane production and intensity without compromising DMI or milk production in dairy cows. This could be an effective strategy for enteric methane mitigation of dairy cows.  相似文献   

6.
BACKGROUND: Tannins added to animal diets may have a positive effect on energy and protein utilisation in the rumen. The objective of this study was to examine the impact of different sources and concentrations (20, 50, 100, 150 and 200 g kg?1 dry matter (DM)) of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen microbial fermentation in vitro. The experiment also included a negative control with no tannins (control) and a positive control with monensin (10 mg L?1). RESULTS: In vitro gas production and total volatile fatty acid (VFA) concentration decreased as tannin concentration increased. Addition of acacia, chestnut or valonea tannins at ≥ 50 g kg?1 or quebracho tannins at ≥ 100 g kg?1 resulted in a decrease (up to 40%) in methane (CH4) production compared with the control. Valonea tannins were the only tannin source that reduced (?11%) CH4 production at 50 g kg?1 without affecting VFA concentration. Tannin treatments reduced ammonia (NH3) and branched‐chain VFA concentrations, indicating a reduction in ruminal protein degradation. Monensin reduced CH4 production (?37%) and NH3 concentration (?20%) without affecting total VFA concentration. CONCLUSION: Supplying acacia, chestnut or valonea tannins at 50 g kg?1 has the potential to reduce CH4 production and ruminal protein degradation with minimum detrimental effects on efficiency of ruminal fermentation. Copyright © 2012 Crown in the right of Canada. Published by John Wiley & Sons, Ltd  相似文献   

7.
This experiment was designed to investigate the effects of different concentrations (0, 1.2, 1.8, 2.4, and 3.2 g/L) of sarsaponin on ruminal microbial methane production using the substrates soluble potato starch, cornstarch, or hay plus concentrate (1.5:1). Ruminal fluid was collected from a dairy cow, mixed with phosphate buffer (1:2) and incubated (30 ml) anaerobically at 38 degrees C for 6 and 24 h with or without sarsaponin. Excluding the lower level of sarsaponin, pH of the medium was slightly decreased. Ammonia-N concentration and numbers of protozoa were decreased in a dose-dependent manner. Total volatile fatty acids and total gas production were increased. Molar proportion of acetate was decreased and propionate was increased with a corresponding decrease in acetate:propionate ratio. Hydrogen production was decreased. As the concentration of sarsaponin increased from 1.2 to 3.2 g/L, fermentation of soluble potato starch, cornstarch, or hay plus concentrate decreased methane production from 20 to 60% (6 h) and 17 to 50% (24 h), 21 to 58% (6 h) and 18 to 52% (24 h), and 23 to 53% (6 h) and 15 to 44% (24 h), respectively. Excluding the lower dose concentration (1.2 g/L) of sarsaponin, in vitro disappearance of dry matter of hay plus concentrate was decreased after 24 h. In conclusion, these results show that sarsaponin stimulated the mixed ruminal microorganism fermentation as well as to inhibit methane production in vitro.  相似文献   

8.
Alfalfa silages from 2 similar trials were analyzed for in vitro ruminal gas production. In both trials, there were 15 treatments: alfalfa treated at ensiling with 1 of 14 lactic acid bacterial inoculants or untreated alfalfa. First-cut (477 g of dry matter/kg) and second-cut (393 g of dry matter/kg) alfalfa were ensiled in glass jars for a minimum of 35 d at room temperature (∼22°C). At opening, a portion of each silage was wet-ground with a mixer. Each silage was then assessed for in vitro ruminal gas production in 3 replicate runs with the wet-ground silage, 1 on the fresh silage and 2 on frozen and thawed silage. In vitro gas production was measured in 160-mL sealed serum vials incubated at 39°C. One gram of silage was incubated with 17.1 mL of nutrient solution, 0.9 mL of reducing solution, and 12 mL of ruminal inoculum (1:2 vol.vol mixture of rumen fluid and buffer). Gas production was measured manually by using a pressure gauge at 3, 6, 9, 24, 48, and 96 h. At 96 h, the rumen fluid was analyzed for pH and volatile fatty acids. In the 2 trials, the untreated control silage produced either numerically the highest or one of the highest levels of gas production per unit of dry matter incubated. In first-cut silage, 9 of the inoculant treatments at 9 h and 4 treatments at 96 h had reduced gas production compared with the control. In second-cut silage, 10 inoculant treatments at both 9 and 96 h had reduced gas production compared with the control. Furthermore, in first-cut silage, the fraction of total gas production at 3, 6, and 9 h was numerically the highest for the control, and only 4 treatments were not significantly lower than the control at 9 h. In second-cut silage, 2 of 14 inoculated treatments produced faster fractional rates of gas production than the control, but most inoculated treatments had numerically slower fractional rates (4 significant) in the first 9 h. The in vitro fermented wet-ground control silages had one of the highest acetate:propionate ratios in both trials, significantly higher than 12 and 8 of the inoculated treatments in first- and second-cut silage, respectively. The response in acetate:propionate ratio in both cuts was similar, even though the control silage was highest in lactic acid in one trial and lowest in the other. Overall, inoculation of crops at ensiling appears to affect in vitro ruminal fermentation of wet-ground silages, even in the absence of large effects during silage fermentation.  相似文献   

9.
The effects of replacing chopped alfalfa hay with alfalfa silage in a total mixed ration containing barley grain and corn silage on production and rumen conditions were investigated. Cows received three diets that all contained (dry matter basis) 38.5% barley grain-based energy supplement, 30.5% corn silage, 17.0% protein supplement, and 4.2% sunflower seeds. One diet contained (dry matter basis) 9.8% of chopped alfalfa hay and no alfalfa silage. One diet contained (dry matter basis) 4.9% chopped alfalfa hay and 4.9% alfalfa silage. One diet contained (dry matter basis) 9.8% of alfalfa silage and no chopped alfalfa hay. Contents of crude protein, neutral detergent fiber, acid detergent fiber, and starch, averaged across diets, were 16.7, 41.3, 21.1, and 24.4% DM, respectively, and did not differ significantly among diets. Replacing chopped alfalfa hay with alfalfa silage decreased the proportion of dietary DM passing through the 8-mm screen of the Penn State Particle Separator from 61.9 to 55.2% dry matter and significantly increased dietary physical effective NDF (peNDF) content, calculated as the NDF retained by the two screens of the Penn State Particle Separator, from 20.1 to 23.3% DM. Replacing chopped alfalfa hay with alfalfa silage also reduced dietary DM content, increased rumen pH from 6.27 to 6.47, reduced volatile fatty acid concentrations, numerically increased milk fat concentration and milk fat yield. Milk yield, milk protein concentration, dry matter intake, and rumen ammonia concentration were not affected.  相似文献   

10.
The current study investigated the relationship between in vitro and in vivo CH4 production by cows fed corn silage (CS)-based rations. In vivo CH4 production was measured in climate respiration chambers using 8 rumen-cannulated Holstein-Friesian cows. In vitro CH4 production was measured using rumen fluid from the 8 cows that were fully adapted to their respective experimental rations. The animals were grouped in 2 blocks, and randomly assigned to 1 of the 4 total mixed rations (TMR) that consisted of 75% experimental CS, 20% concentrate, and 5% wheat straw [dry matter (DM) basis]. The experimental CS were prepared from whole-plant corn that was harvested at either a very early (25% DM), early (28% DM), medium (32% DM), or late (40% DM) stage of maturity. The 4 experimental TMR and the corresponding CS served as substrate in 2 separate in vitro runs (each run representing 1 block of 4 animals) using rumen fluid from cows fed the TMR in question. No relationship was found between in vivo CH4 production and in vitro CH4 production measured at various time points between 2 and 48 h. None of the in vitro gas production (GP) and CH4 production parameters was influenced by an interaction between substrate and origin of rumen fluid. In vitro measured 48-h GP was not affected by the maturity of whole-plant corn, irrespective whether CS alone or as part of TMR was incubated in adapted rumen inoculum. Incubation of the experimental TMR did not affect the kinetics parameters associated with gas or CH4 production, but when CS alone was incubated the asymptote of GP of the soluble fraction was slightly decreased with increasing maturity of CS at harvest. In vitro CH4 production expressed as a percent of total gas was not affected by the maturity of whole-plant corn at harvest. Several in vitro parameters were significantly affected (GP) or tended to be affected (CH4) by diet fed to donor cows. It was concluded that the current in vitro technique is not suitable to predict in vivo CH4 production from CS-based rations.  相似文献   

11.
BACKGROUND: Current feed evaluation systems for dairy cattle assume that nutritive values of feed components can be added, but do not take into account possible interactions among feed components. The main objective of this study was to investigate associative effects on in vitro gas production from total mixed ration (TMR), based on grass silage and cereal concentrate, and separate TMR components. TMR was incubated with inocula of free rumen liquid (FRL) and particle‐associated rumen liquid (PAL) for 48 h and donor cows were fed TMRs with three different particle sizes to evaluate their influence on associative effects. RESULTS: Associative effects on gas production largely occurred at 2 and 4 h of incubation and dissipated with time of incubation. Incubation of TMR with PAL increased (P < 0.01) gas production compared to FRL at all incubation times; however, associative effects were not different between rumen inocula. Dietary particle size affected associative effects on gas production when TMR was incubated with FRL (P < 0.05) compared to PAL, particularly at early hours of incubation. CONCLUSIONS: Associative effects at early incubation hours emphasise that summing the nutritive values of feedstuffs may underestimate fermentation intensity of TMR which may have implications for prediction of ruminal fermentation yield. Copyright © 2012 Society of Chemical Industry  相似文献   

12.
In this study, we assessed the effects of increasing amounts of linseed oil (LSO) in corn silage-based diets on enteric CH4 production, rumen fermentation characteristics, protozoal population, nutrient digestibility, N utilization, and milk production. For this purpose, 12 multiparous lactating Holstein cows (84 ± 28 d in milk; mean ± SD) fitted with ruminal cannula were used in a replicated 4 × 4 Latin square design (35-d period). The cows were fed ad libitum a total mixed ration without supplementation (control) or supplemented [on a dry matter (DM) basis] with LSO at 2% (LSO2), 3% (LSO3) or 4% (LSO4). The forage:concentrate ratio was 61:39 (on DM basis) and was similar among the experimental diets. The forage portion consisted of corn silage (58% diet DM) and timothy hay (3% diet DM). The proportions of soybean meal, corn grain and soybean hulls decreased as the amount of LSO in the diet increased. Daily methane production (g/d) decreased quadratically as the amount of LSO increased in the diet. Increasing LSO dietary supplementation caused a linear decrease in CH4 emissions expressed on either DM intake (DMI) basis (?9, ?20, and ?28%, for LSO2, LSO3, and LSO4, respectively) or gross energy intake basis (?12, ?22, and ?31%, for LSO2, LSO3, and LSO4, respectively). At 2 and 3% LSO, the decrease in enteric CH4 emissions occurred without negatively affecting DMI or apparent total-tract digestibility of fiber and without changing protozoa numbers. However, these 2 diets caused a shift in volatile fatty acids pattern toward less acetate and more propionate. The effect of the LSO4 diet on enteric CH4 emissions was associated with a decrease in DMI, fiber apparent-total-tract digestibility, protozoa numbers (total and genera), and an increase in propionate proportion at the expense of acetate and butyrate proportions. Methane emission intensity [g of CH4/kg of energy-corrected milk (ECM)] decreased linearly (up to 28% decrease) with increasing LSO level in the diet. Milk fat yield decreased linearly (up to 19% decrease) with increasing inclusion of LSO in the diet. Milk protein yield increased at 2% or 3% LSO and decreased to the same level as that of the nonsupplemented diet at 4% LSO (quadratic effect). Yield of ECM was unchanged by LSO2 and LSO3 treatments but decreased (?2.8 kg/d) upon supplementation with 4% LSO (quadratic effect). Efficiency of milk production (kg ECM/kg DMI) was unaffected by the 3 levels of LSO. Ruminal NH3 concentration was quadratically affected by LSO supplementation; decreasing only at the highest level of LSO supplementation. The amount (g/d) of N excreted in feces and urine decreased linearly and quadratically, respectively, as the amount of LSO increased in the diet, mainly because of the reduction in N intake. Efficiency of dietary N used for milk N secretion increased linearly with increasing LSO supplementation in the diet. We conclude that supplementing corn silage-based diets with 2 or 3% of LSO can reduce enteric CH4 emissions up by to 20% without impairing animal productivity (i.e., ECM yield and feed efficiency).  相似文献   

13.
Methane production from ruminant livestock varies with the diet as a result of factors such as dry matter intake, diet composition, and digestibility. To estimate the effect of dietary composition and feed additives, CH4 production can be measured in vitro as a first step because large numbers of samples can be incubated and analyzed at the same time. This study evaluated a recently developed in vitro method for prediction of in vivo CH4 production by examining the relationship between predicted and observed CH4 production values. A total of 49 different diets (observations), used in previous 13 in vivo studies, were selected to include diets varying in nutrient composition. Methane production was measured in all in vivo studies by respiration chambers or the GreenFeed system (C-Lock Inc., Rapid City, SD). Overall, the in vitro system predicted CH4 production well (R2 = 0.96), but the values obtained were slightly underestimated compared with observed in vivo values (mean 399 L/d compared with 418 L/d: root mean square prediction error = 51.6 L/d or 12.3% of observed mean). Further analysis of the effect on residuals showed no significant relationship between CH4 production and most factors known to affect CH4 production such as dry matter intake, digestibility, and dietary concentrations of fat and starch. However, some factors included in the model were not well predicted by the system, with residuals negatively related to neutral detergent fiber concentration and positively related to concentrate proportion. The in vitro system can thus be useful for screening diets and evaluation of feed additives as a first step that can be best interpreted when feeding cows at maintenance level.  相似文献   

14.
Two experiments were conducted on alfalfa to investigate the effects of the addition of commercial chestnut hydrolyzable tannin at ensiling on 1) silage fermentation quality in lab-scale silos and protein degradation in the rumen, and 2) silage fermentation quality and proteolysis in bale silages. Wilted alfalfa was prepared with 4 tannin levels (0, 2, 4, and 6% on a dry matter (DM) basis; T0, T1, T2, T3, respectively) and ensiled in lab-scale silos. Silages (33% DM) were analyzed for fermentation quality, protein rumen degradability in situ, and organic matter digestibility in vitro through gas production after 120 d of conservation. Wilted alfalfa containing 0 and 4% tannin (T0 and T2) was harvested at 40% DM (wilting level I) and 53% DM (wilting level II) for bale (600 mm diameter) silage. Silages were analyzed for fermentation quality after 78 d of conservation. All the silages were well fermented with no butyric acid. Lab-scale silages showed reductions in ammonia, nonprotein nitrogen (NPN) and DM losses in T2 and T3 treatments, while the fermentation acid profiles were unaffected. In experiment 1, the untreated silage (T0) had the highest protein degradability after being incubated in the rumen. The addition of tannin reduced crude protein ruminal disappearance in a dose-dependent manner. However, the tannin reduced the organic matter digestibility by 5.1% for all of the tannin addition levels. The tannin positively affected the silage quality in the round bale silages, in particular reducing ammonia and NPN in the lowest wilting level. In both experiments, T2 treatment reduced proteolysis without any influence of DM on the binding reaction and reduced the NPN by 15% in comparison to the control.  相似文献   

15.
16.
17.
18.
This experiment was designed to investigate the effects of different concentrations (0.00, 0.10, 0.15, 0.20, 0.25, and 0.30 g/L) of dried Cordyceps militaris mushroom on in vitro anaerobic ruminal microbe fermentation and methane production using soluble starch as a substrate. Ruminal fluids were collected from Korean native cattle, mixed with phosphate buffer (1:2), and incubated anaerobically at 38°C for 3, 6, 9, 12, 24, 36, 48, and 72 h. The addition of C. militaris significantly increased total volatile fatty acid and total gas production. The molar proportion of acetate was decreased and that of propionate was increased, with a corresponding decrease in the acetate:propionate ratio. As the concentration of C. militaris increased from 0.10 to 0.30 g/L, methane and hydrogen production decreased. The decrease in methane accumulation relative to the control was 14.1, 22.0, 24.9, 39.7, and 40.9% for the 0.10, 0.15, 0.20, 0.25, and 0.30 g/L treatments, respectively. Ammonia-N concentration and numbers of live protozoa decreased linearly with increasing concentrations of C. militaris. The pH of the medium significantly decreased at the highest level of C. militaris compared with the control. In conclusion, C. militaris stimulated mixed ruminal microorganism fermentation and inhibited methane production in vitro. Therefore, C. militaris could be developed as a novel compound for antimethanogenesis.  相似文献   

19.
Variation in the composition of microorganisms in the rumen (the rumen microbiome) of dairy cattle (Bos taurus) is of great interest because of possible links to methane emission levels. Feed additives are one method being investigated to reduce enteric methane production by dairy cattle. Here we report the effect of 2 methane-mitigating feed additives (grapemarc and a combination of lipids and tannin) on rumen microbiome profiles of Holstein dairy cattle. We used untargeted (shotgun) massively parallel sequencing of microbes present in rumen fluid to generate quantitative rumen microbiome profiles. We observed large effects of the feed additives on the rumen microbiome profiles using multiple approaches, including linear mixed modeling, hierarchical clustering, and metagenomic predictions. The effect on the fecal microbiome profiles was not detectable using hierarchical clustering, but was significant in the linear mixed model and when metagenomic predictions were used, suggesting a more subtle effect of the diets on the lower gastrointestinal microbiome. A differential representation analysis (analogous to differential expression in RNA sequencing) showed significant overlap in the contigs (which are genome fragments representing different microorganism species) that were differentially represented between experiments. These similarities suggest that, despite the different additives used, the 2 diets assessed in this investigation altered the microbiomes of the samples in similar ways. Contigs that were differentially represented in both experiments were tested for associations with methane production in an independent set of animals. These animals were not treated with a methane-mitigating diet, but did show substantial natural variation in methane emission levels. The contigs that were significantly differentially represented in response to both dietary additives showed a significant enrichment for associations with methane production. This suggests that these methane-mitigating diets have altered the rumen microbiome toward naturally low methane-emitting microbial profiles. The contig sequences are predominantly new and include Faecalibacterium spp. The contigs we have identified here are potential biomarkers for low-methane-emitting cattle.  相似文献   

20.
A meta-analysis based on an individual-cow data set was conducted to investigate the effects of between-cow variation and related animal variables on predicted CH4 emissions from dairy cows. Data were taken from 40 change-over studies consisting of a total of 637 cow/period observations. Animal production and rumen fermentation characteristics were measured for 154 diets in 40 studies; diet digestibility was measured for 135 diets in 34 studies, and ruminal digestion kinetics was measured for 56 diets in 15 studies. The experimental diets were based on grass silage, with cereal grains or by-products as energy supplements, and soybean or canola meal as protein supplements. Average forage:concentrate ratio across all diets on a dry matter basis was 59:41. Methane production was predicted from apparently fermented substrate using stoichiometric principles. Data were analyzed by mixed-model regression using diet and period within experiment as random effects, thereby allowing the effect of experiment, diet, and period to be excluded. Dry matter intake and milk yield were more repeatable experimental measures than rumen fermentation, nutrient outflow, diet digestibility, or estimated CH4 yield. Between-cow coefficient of variation (CV) was 0.010 for stoichiometric CH4 per mol of volatile fatty acids and 0.067 for predicted CH4 yield (CH4/dry matter intake). Organic matter digestibility (OMD) also displayed little between-cow variation (CV = 0.013), indicating that between-cow variation in diet digestibility and rumen fermentation pattern do not markedly contribute to between cow-variation in CH4 yield. Digesta passage rate was much more variable (CV = 0.08) between cows than OMD or rumen fermentation pattern. Increased digesta passage rate is associated with improved energetic efficiency of microbial N synthesis, which partitions fermented substrate from volatile fatty acids and gases to microbial cells that are more reduced than fermented carbohydrates. Positive relationships were observed between CH4 per mol of volatile fatty acids versus OMD and rumen ammonia N concentration versus OMD; and negative relationships between the efficiency of microbial N synthesis versus OMD and digesta passage rate versus OMD, suggesting that the effects of these variables on CH4 yield were additive. It can be concluded that variations in OMD and efficiency in microbial N synthesis resulting from variations in digesta passage contribute more to between-animal variation in CH4 emissions than rumen fermentation pattern.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号