首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fragment-impact problems exhibit excessive material distortion and complex contact conditions that pose considerable challenges in mesh based numerical methods such as the finite element method (FEM). A semi-Lagrangian reproducing kernel particle method (RKPM) is proposed for fragment-impact modeling to alleviate mesh distortion difficulties associated with the Lagrangian FEM and to minimize the convective transport effect in the Eulerian or Arbitrary Lagrangian Eulerian FEM. A stabilized non-conforming nodal integration with boundary correction for the semi-Lagrangian RKPM is also proposed. Under the framework of semi-Lagrangian RKPM, a kernel contact algorithm is introduced to address multi-body contact. Stability analysis shows that temporal stability of the kernel contact algorithm is related to the velocity gradient between two contacting bodies. The performance of the proposed methods is examined by numerical simulation of penetration processes.  相似文献   

2.
The earlier work in the development of direct strong form collocation methods, such as the reproducing kernel collocation method (RKCM), addressed the domain integration issue in the Galerkin type meshfree method, such as the reproducing kernel particle method, but with increased computational complexity because of taking higher order derivatives of the approximation functions and the need for using a large number of collocation points for optimal convergence. In this work, we intend to address the computational complexity in RKCM while achieving optimal convergence by introducing a gradient reproduction kernel approximation. The proposed gradient RKCM reduces the order of differentiation to the first order for solving second‐order PDEs with strong form collocation. We also show that, different from the typical strong form collocation method where a significantly large number of collocation points than the number of source points is needed for optimal convergence, the same number of collocation points and source points can be used in gradient RKCM. We also show that the same order of convergence rates in the primary unknown and its first‐order derivative is achieved, owing to the imposition of gradient reproducing conditions. The numerical examples are given to verify the analytical prediction. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Reproducing kernel particle method (RKPM) has been applied to many large deformation problems. RKPM relies on polynomial reproducing conditions to yield desired accuracy and convergence properties but requires appropriate kernel support coverage of neighboring nodes to ensure kernel stability. This kernel stability condition is difficult to achieve for problems with large particle motion such as the fragment‐impact processes that commonly exist in extreme events. A new reproducing kernel formulation with ‘quasi‐linear’ reproducing conditions is introduced. In this approach, the first‐order polynomial reproducing conditions are approximately enforced to yield a nonsingular moment matrix. With proper error control of the first‐order completeness, nearly second‐order convergence rate in L2 norm can be achieved while maintaining kernel stability. The effectiveness of this quasi‐linear RKPM formulation is demonstrated by modeling several extremely large deformation and fragment‐impact problems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
Reproducing Kernel Particle Method (RKPM) with a built-in feature of multiresolution analysis is reviewed and applied to large deformation problems. Since the application of multiresolution RKPM to the large deformation problems is still in its early stage of development, we introduce, in this paper, the concept of a multiple-scale measure which is a extension of the linear formulations to nonlinear problems. We also propose an appropriate measure to properly detect the high-scale response of a largely deformed material. Via this technique of multilevel decomposition of a reproducing kernel function, the high-scale component of the measure is used in deriving an adaptive algorithm by simply inserting extra particles. Numerical experiments for non-linear elastic materials are performed to demonstrate the completeness of multiple-scale Reproducing Kernel Particle Method. © 1998 John Wiley & Sons, Ltd.  相似文献   

5.
李鸿秋  陈国平  史宝军 《振动与冲击》2012,31(8):148-152,163
针对多通域封闭空间声场响应的亥姆霍兹方程的求解问题,本文基于核重构思想,应用无网格配点法构造近似函数,并利用最小二乘方法的原理解决边界问题,离散控制微分方程,建立求解的代数方程。边界问题以及稳定性问题一直是无网格法的难点,该方法的系数矩阵是对称正定的,因此结果具有较好的稳定性。通过数值算例分析多联通域二维问题中配点均匀分布与随机分布时此方法的精确性以及稳定性,利用典型算例对比无网格方法数值解与解析解,结果证明此方法不需要进行网格划分,节点可随机分布,精度较高且具有良好的收敛性。  相似文献   

6.
基于重构核思想,应用无网格配点法构造近似函数,并利用最小二乘方法的原理解决边界问题,离散控制微分方程,建立求解的代数方程.并将此方法应用于封闭声腔响应的求解,即对亥姆霍兹方程进行离散,建立其最小二乘无网格配点格式.该方法的系数矩阵是对称正定的,因而保证了解的稳定性.通过数值算例分别验证了配点均匀分布与随机分布时此方法的...  相似文献   

7.
A general formulation for developing reproducing kernel (RK) interpolation is presented. This is based on the coupling of a primitive function and an enrichment function. The primitive function introduces discrete Kronecker delta properties, while the enrichment function constitutes reproducing conditions. A necessary condition for obtaining a RK interpolation function is an orthogonality condition between the vector of enrichment functions and the vector of shifted monomial functions at the discrete points. A normalized kernel function with relative small support is employed as the primitive function. This approach does not employ a finite element shape function and therefore the interpolation function can be arbitrarily smooth. To maintain the convergence properties of the original RK approximation, a mixed interpolation is introduced. A rigorous error analysis is provided for the proposed method. Optimal order error estimates are shown for the meshfree interpolation in any Sobolev norms. Optimal order convergence is maintained when the proposed method is employed to solve one‐dimensional boundary value problems. Numerical experiments are done demonstrating the theoretical error estimates. The performance of the method is illustrated in several sample problems. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

8.
Aiming to simplify the solution process of elasto‐plastic problems, this paper proposes a reproducing kernel particle algorithm based on principles of parametric quadratic programming for elasto‐plasticity. The parametric quadratic programming theory is useful and effective for the assessment of certain features of structural elasto‐plastic behaviour and can also be exploited for numerical iteration. Examples are presented to illustrate the essential aspects of the behaviour of the model proposed and the flexibility of the coupled parametric quadratic programming formulations with the reproducing kernel particle method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
In this paper a new coupling method to merge the reproducing kernel particle method (RKPM) and the boundary element method (BEM) is proposed. In this formulation, the whole problem domain will first be divided into two subdomains in which the RKPM and the BEM are applied respectively. A simple and direct coupling procedure is then applied to preserve the compatibility of the solution along the interface of the two subdomains. Unlike other coupling procedures suggested previously, the present coupling procedure neither requires modification of the RKPM and the BEM formulations nor the use of finite elements along the interface boundary between the two subdomains. The validity and efficiency of the coupling procedure are demonstrated by using it to solve five benchmark elastostatic stress analysis problems. In addition, a simple analysis of the a priori convergence rate of the coupling procedure is given. Preliminary assessment of the convergence characteristics of the coupling procedure is done by carrying out uniform refinements on the benchmark problems.  相似文献   

10.
We introduce fixed, moving and multiple fixed kernel techniques for the construction of interpolation functions over a scattered set of points. We show that for a particular choice of nodal volumes, the fixed, moving and multiple fixed kernel approaches are identical to the fixed, moving and multiple fixed least squares approaches. A finite cloud method, which combines collocation with a fixed kernel technique for the construction of interpolation functions, is presented as a true meshless technique for the numerical solution of partial differential equations. Numerical results are presented for several one‐and two‐dimensional problems, including examples from elasticity, heat conduction, thermoelasticity, Stokes flow and piezoelectricity. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
12.
In this paper, by combining the dimension splitting method and the improved complex variable element‐free Galerkin method, the dimension splitting and improved complex variable element‐free Galerkin (DS‐ICVEFG) method is presented for 3‐dimensional (3D) transient heat conduction problems. Using the dimension splitting method, a 3D transient heat conduction problem is translated into a series of 2‐dimensional ones, which can be solved with the improved complex variable element‐free Galerkin (ICVEFG) method. In the ICVEFG method for each 2‐dimensional problem, the improved complex variable moving least‐square approximation is used to obtain the shape functions, and the penalty method is used to apply the essential boundary conditions. Finite difference method is used in the 1‐dimensional direction, and the Galerkin weak form of 3D transient heat conduction problem is used to obtain the final discretized equations. Then, the DS‐ICVEFG method for 3D transient heat conduction problems is presented. Four numerical examples are given to show that the new method has higher computational precision and efficiency.  相似文献   

13.
This work introduces a numerical integration technique based on partition of unity (PU) to reproducing kernel particle method (RKPM) and presents an implementation of the visibility criterion for meshfree methods. According to the theory of PU and the inherent features of Gaussian quadrature, the convergence property of the PU integration is studied in the paper. Moreover, the practical approaches to implement the PU integration are presented in different strategies. And a method to carry out visibility criterion is presented to handle the problems with a complex domain. Furthermore, numerical examples have been performed on the h-version and p-like version convergence studies of the PU integration and the validity of visibility criterion. The results demonstrate that PU integration is a feasible and effective numerical integration technique, and RKPM enriched by PU integration and visibility criterion is of more efficiency, versatility and high performance.The project is supported by National Natural Science Foundation of China under grant number 10202018.  相似文献   

14.
A discontinuous reproducing kernel element approximation is proposed in the case where weak discontinuity exists over an interface in the physical domain. The proposed method can effectively take care of the discontinuity of the derivative by truncating the window function and global partition polynomials. This new approximation keeps the advantage of both finite element methods and meshfree methods as in the reproducing kernel element method. The approximation has the interpolation property if the support of the window function is contained in the union of the elements associated with the corresponding node; therefore, the continuity of the primitive variables at nodes on the interface is ensured. Furthermore, it is smooth on each subregion (or each material) separated by the interface. The major advantage of the method is its simplicity in implementation and it is computationally efficient compared to other methods treating discontinuity. The convergence of the numerical solution is validated through calculations of some material discontinuity problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
This paper presents a hybrid element-free Galerkin (HEFG) method for solving wave propagation problems. By introducing the dimension split method, the three-dimensional wave propagation problems are transformed into a series of two-dimensional ones in other one-dimensional directions. The two-dimensional problems are solved using the improved element-free Galerkin (IEFG) method, and the finite difference method is used in the one-dimensional splitting direction and the time space. Then, the formulas of the HEFG method for three-dimensional wave propagation problems are obtained. Numerical examples are selected to show the effectiveness and the advantage of the HEFG method. The convergence and error analysis of the HEFG method are discussed according to the numerical results under different splitting directions, weight functions, node distributions, scale parameters of the influence domain, penalty factors, and time steps. The numerical results are given to show the convergence and advantages of the HEFG method over the IEFG method. Comparing with the IEFG method, the HEFG method has greater computational precision and speed for three-dimensional wave propagation problems.  相似文献   

16.
17.
In Part II of this study, an automatic adaptive refinement procedure using the reproducing kernel particle method (RKPM) for the solution of 2D linear boundary value problems is suggested. Based in the theoretical development and the numerical experiments done in Part I of this study, the Zienkiewicz and Zhu (ZZ) error estimation scheme is combined with a new stress recovery procedure for the a posteriori error estimation of the adaptive refinement procedure. By considering the a priori convergence rate of the RKPM and the estimated error norm, an adaptive refinement strategy for the determination of optimal point distribution is proposed. In the suggested adaptive refinement scheme, the local refinement indicators used are computed by considering the partition of unity property of the RKPM shape functions. In addition, a simple but effective variable support size definition scheme is suggested to ensure the robustness of the adaptive RKPM procedure. The performance of the suggested adaptive procedure is tested by using it to solve several benchmark problems. Numerical results indicated that the suggested refinement scheme can lead to the generation of nearly optimal meshes for both smooth and singular problems. The optimal convergence rate of the RKPM is restored and thus the effectivity indices of the ZZ error estimator are converging to the ideal value of unity as the meshes are refined.  相似文献   

18.
A reproducing kernel particle method with built‐in multiresolution features in a very attractive meshfree method for numerical solution of partial differential equations. The design and implementation of a Galerkin‐based reproducing kernel particle method, however, faces several challenges such as the issue of nodal volumes and accurate and efficient implementation of boundary conditions. In this paper we present a point collocation method based on reproducing kernel approximations. We show that, in a point collocation approach, the assignment of nodal volumes and implementation of boundary conditions are not critical issues and points can be sprinkled randomly making the point collocation method a true meshless approach. The point collocation method based on reproducing kernel approximations, however, requires the calculation of higher‐order derivatives that would typically not be required in a Galerkin method, A correction function and reproducing conditions that enable consistency of the point collocation method are derived. The point collocation method is shown to be accurate for several one and two‐dimensional problems and the convergence rate of the point collocation method is addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
The numerical solution to two-dimensional unsteady heat conduction problem is obtained using the reproducing kernel particle method (RKPM). A variational method is employed to furnish the discrete equations, and the essential boundary conditions are enforced by the penalty method. Convergence analysis and error estimation are discussed. Compared with the numerical methods based on mesh, the RKPM needs only the scattered nodes instead of meshing the domain of the problem. The effectiveness of the RKPM for two-dimensional unsteady heat conduction problems is examined by two numerical examples.  相似文献   

20.
In this paper we present a novel spline strip kernel particle method (SSKPM) that has been developed for solving a class of two‐dimensional (2D) elasticity problems. This new approach combines the concepts of the mesh‐free methods and the spline strip method. For the interpolation of the assumed displacement field, we employed the kernel particle shape functions in the transverse direction, and the B3‐spline function in the longitudinal direction. The formulation is validated on several beam and semi‐infinite plate problems. The numerical results of these test problems are then compared with the existing solutions obtained by the exact or numerical methods. From this study we conclude that the SSKPM is a potential alternative to the classical finite strip method (FSM). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号