首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biodegradable poly(L ‐lactic acid) (PLLA) fibers were processed by a two‐step melt‐spinning method (melt extrusion and hot draw) from PLLA with three different viscosity‐average molecular weights (494,600, 304,700, and 262,800). Before spinning, the polymer flakes were first milled into powders and dried under vacuum. Viscosity‐average molecular weight of PLLA following the fabrication process was monitored. Tensile properties of as‐spun and hot‐drawn fibers were investigated. Morphology of the PLLA fibers was viewed under a scanning electron microscope. Crystallinity of these fibers was assessed by thermogram analysis of differential scanning calorimetry. Results showed that the extent of decrease in the viscosity‐average molecular weight of PLLA dropped sharply by 13.1–19.5% during pulverization and by 39.0–69.0% during melt‐extrusion. The hot‐draw process in this study had a little effect on the viscosity‐average molecular weight of PLLA. Smoother fibers could be obtained for the die temperature at least 230°C for raw materials with higher crystallinity (more than 75%) and at least 220°C for raw materials with lower crystallinity (about 60%). The as‐spun fibers showed crystallinity of 16.5–22.8% and the value increased to 50.3–63.7% after hot draw. Tensile moduli of the as‐spun fibers were in the range of 1.2–2.4 GPa, which were raised to 3.6–5.4 GPa after hot draw. The final PLLA fibers with 110–160 μm diameters showed tensile strengths of 300–600 MPa. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 251–260, 2001  相似文献   

2.
Poly (lactic acid) (PLA) and PLA/nanohydroxyapatite (nHA) composites, containing 2 wt% and 5 wt% of nHA were subjected to in vitro hydrolytic degradation tests in saline phosphate solution at different temperatures (37°C, 48°C, 60°C, and 72°C) to accelerate degradation. Samples were characterized by water uptake, weight loss tests, size exclusion chromatography (SEC), differential scanning calorimetry (DSC), and visual analyses. Arrhenius equation was used to describe the behavior of weight loss as a function of time. The PLA activation energy of weight loss showed to be lower than that of the PLA/nHA composites, indicating that the incorporation of nHA retarded the hydrolytic degradation. The rate and percentage of weight loss increased with increasing temperature. All samples presented a decrease in Tg and an increase in degree of crystallinity as a function of time. Incorporation of nHA retarded this behavior that showed to be more expressive in PLA containing 5 wt% nHA.  相似文献   

3.
聚乳酸熔融缩聚的研究   总被引:1,自引:0,他引:1  
综述了近年来国内外聚乳酸熔融聚合的研究情况,概述了直接熔融缩聚、熔融-固相和熔融-扩链合成聚乳酸的研究,并研究探讨了熔融聚合中影响聚乳酸相对分子质量的因素。  相似文献   

4.
This study investigates the effect of nanocrystalline cellulose (NCC) and polyethylene glycol (PEG) on the hydrolytic degradation behavior of poly(lactic acid) (PLA) bio-nanocomposites compared with that of neat PLA, under specific environmental condition, namely at 37°C in a pH 7.4 phosphate buffer medium for a time period up to 60 days. The water absorption, mass loss, molecular weight, and the morphologies of nanocomposites before and after degradation were explored. Thermogravimetric analysis (TGA) was used to study the thermal decomposition of the PLA/NCC/PEG nanocomposites before and after degradation. The results showed that the presence of hydrophilic NCC and PEG significantly accelerated the hydrolytic degradation of PLA, which was related to the rapid dissolution of PEG causing easy access of water molecules to the composites and initiating fast hydrolytic chain scission of PLA. The thermal degradation temperatures of the nanocomposites slightly decreased due to the poor thermal stability of NCC in comparison with that of the neat PLA. After degradation, the thermal stability of the separated PLA from nanocomposites significantly decreased because the molecular decreased during the hydrolytic process. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46933.  相似文献   

5.
Poly(lactic acid)(PLA)/cellulose nanocrystal nanocomposite fibers were prepared by electrospinning at elevated temperature. Columbia Blue, a nonionic hydrophobic dye with a molecular weight and partition coefficient that mimics a systemic agrichemical, was incorporated into the fibers as a model compound. The release of Columbia Blue into water displayed little burst release. Diffusion‐controlled release of Columbia Blue was significantly influenced by the hydrophobicity of the electrospun PLA nanocomposite fibers and followed Fickian diffusion kinetics. The release of Columbia Blue by degradation‐controlled mechanism followed zero‐order, time‐independent Case II kinetics (n = 1.0). Increasing cellulose nanocrystal content in the fibers increased the fiber degradation rate and the Columbia Blue release rate. The plasticizing effect of Columbia Blue on the thermal properties of the electrospun nanocomposite fibers showed the miscibility of Columbia Blue inside the electrospun nanocomposite fibers. A greenhouse trial confirmed the anticipated trends of higher pesticide dosage causing higher whitefly mortality percentage. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2013  相似文献   

6.
Poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG) were melt-blended and extruded into films in the PLA/PEG ratios of 100/0, 90/10, 70/30, 50/50, and 30/70. It was concluded from the differential scanning calorimetry and dynamic mechanical analysis results that PLA/PEG blends range from miscible to partially miscible, depending on the concentration. Below 50% PEG content the PEG plasticized the PLA, yielding higher elongations and lower modulus values. Above 50% PEG content the blend morphology was driven by the increasing crystallinity of PEG, resulting in an increase in modulus and a corresponding decrease in elongation at break. The tensile strength was found to decrease in a linear fashion with increasing PEG content. Results obtained from enzymatic degradation show that the weight loss for all of the blends was significantly greater than that for the pure PLA. When the PEG content was 30% or lower, weight loss was found to be primarily due to enzymatic degradation of the PLA. Above 30% PEG content, the weight loss was found to be mainly due to the dissolution of PEG. During hydrolytic degradation, for PLA/PEG blends up to 30% PEG, weight loss occurs as a combination of degradation of PLA and dissolution of PEG. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1495–1505, 1997  相似文献   

7.
超支化聚酰胺酯对聚乳酸增韧改性的研究   总被引:5,自引:0,他引:5  
采用熔融共混的方法,用生物可降解的超支化聚酰胺酯(HBP)对聚乳酸(PLA)进行增韧改性,制备出具有良好韧性的PLA复合材料。对不同HBP含量的共混物的红外光谱、热性能和力学性能进行了测试和分析。红外光谱显示PLA和HBP间存在氢键作用。HBP的加入使PLA的结晶度从30.99%降低到18.58%。当HBP含量增加到10%时,PLA共混物的拉伸强度略有提高,且断裂伸长达到43.06%。结果表明:HBP的加入对PLA起到了很好的增韧作用。  相似文献   

8.
Processing strategies were developed to manufacture poly(lactic acid) (PLA) blown films without melt strength enhancers (MSEs). The effects of processing temperature on PLA's melt properties (shear and elongational viscosities), PLA grades, and other processing conditions [ratio of take‐up roller to extruder's rotational screw speeds or processing speed ratio (PSR) and internal air pressures] on film's blow‐up ratio were examined. Experimental results indicate that extrusion‐blown amorphous and semicrystalline PLA films can be successfully manufactured without MSEs by controlling melt rheology through processing temperature and other extrusion processing conditions. PLA processed at lower extrusion temperature had higher melt viscosities, which favored the formation of stable films depending on the PSR and internal air pressure used. Inappropriate control of PSR and internal air pressure led to unstable films with various processing defects such as melt sag, bubble dancing, or draw resonance, irrespective of the lower extrusion processing temperature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45212.  相似文献   

9.
以左旋乳酸(L?LA)和乙醇酸(GA)为原料,利用一步法熔融共聚合成聚(乳酸?乙醇酸)(PLLGA)共聚物,通过差示扫描量热仪(DSC)对共聚物薄膜的结晶性能进行了表征,并利用Avrami方程对其进行了等温结晶动力学研究,通过万能拉伸试验机和压差法气体透过仪对共聚物薄膜的力学性能和气体阻隔性能进行测试。结果表明,PLLGA共聚物薄膜中GA的引入对材料结晶性能有较大影响,在GA含量为4 %(摩尔分数,下同)的PLLGA中,GA表现为成核剂作用,共聚物结晶比纯聚左旋乳酸(PLLA)薄膜快,半结晶时间减少;而在GA含量为8 %的PLLGA中,GA则表现出限制分子链运动的作用,破坏共聚物分子间的规整度,导致材料结晶性能大幅度降低,处于非晶态;随着GA含量的增加,PLLGA薄膜的拉伸强度和弹性模量逐步下降,而断裂伸长率大幅度增加,GA含量为8 %的PLLGA的断裂伸长率达到了130.1 %,是纯PLLA薄膜的21.3倍;同时,PLLGA薄膜的气体阻隔性显著增加,5 ℃时,相比于纯PLLA薄膜,GA含量为8 %的PLLGA薄膜的O2、CO2、N2透过量分别降低了47 %、41 %和39 %。  相似文献   

10.
聚乳酸的合成及应用   总被引:5,自引:0,他引:5  
综合分析了聚乳酸的合成方法和应用概况,重点阐述了间接开环聚合的机理,以及直接缩聚反应提高聚乳酸分子质量的最新进展概况。对聚乳酸的应用现状及应用前景进行了归纳分析,提出了聚乳酸研究的发展方向及重点应用领域。  相似文献   

11.
对可生物降解的聚乳酸类胶粘剂的种类、应用及最新的研究进展等几个方面进行了综述。特别介 绍了工业用聚乳酸类胶粘剂和医学用聚乳酸类胶粘剂的研究进展。  相似文献   

12.
Poly(lactic acid) (PLA) is a well known biodegradable thermoplastic with excellent mechanical properties that is a product from renewable resources. However, the brittleness of PLA limits its general applications. Using epoxidized soybean oil (ESO) as a novel plasticizer of poly(lactic acid), the composite blend with the twin‐screw plastic extruder at five concentrations, 3, 6, 9, 12, and 15 wt %, respectively. Compared with pure PLA, all sets of blends show certain improvement of toughness to different extents. The concentration with 9 wt % ESO increases the elongation at break about 63%. The melt flow rates of these blends with respect to different ESO ratio have been examined using a melt flow indexer. Rheological behaviors about shear viscosity and melt strength analysis are discussed based on capillary rheology measurements. The tensile strength and melt strength of the blends with 6 wt % ESO simultaneity reach the maximums; whereas the elongation at break of the blends is the second highest level. ESO exhibits positive effect on both the elongation at break and melt strength. The results indicate that the blend obtained better rheological performance and melt strength. The content of 6 wt % ESO in PLA has been considered as a better balance of performance. The results have also demonstrated that there is a certain correlation between the performance in mechanical properties and melt rheological characterization for the PLA/ESO blends.© 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

13.
催化剂对L-乳酸和乙醇酸共聚物结构性能的影响   总被引:1,自引:0,他引:1  
以L-乳酸(LA)和乙醇酸(GA)(LA:GA摩尔比为20:80)为原料,在170℃、压力小于70 Pa下反应10 h,直接熔融聚合合成乳酸-乙醇酸共聚物(PLGA),研究了催化剂种类、催化剂用量以及复配催化剂比例对PLGA特性粘数的影响。结果表明,使用复合催化剂氯化亚锡(SnC l2)与对甲基苯磺酸(TSA),摩尔比为1:1,其中SnC l2相对LA与GA的总质量的质量分数为0.4%时,所得PLGA产物的特性粘数较高,为0.352 dL/g。红外光谱和核磁共振氢谱表明,PLGA为LA与GA共聚物,共聚产物中GA比例大于投料值,由差示扫描量热分析和X射线衍射分析表明,PLGA为非结晶高聚物。  相似文献   

14.
15.
To improve the processability of micropolymer‐based devices used for biomedical applications, poly(lactic acid) (PLA) was melt‐blended with poly(ethylene glycol)s (PEGs) of different molecular weights (MWs; weight‐average MWs = 200, 800, 2000, and 4000; these PEGS are referred to as PEG200, PEG800, PEG2000, and PEG4000, respectively, in this article). The thermal properties, mechanical properties, and rheological properties of the PLA and the PLA–PEG blends were investigated. The tensile samples’ morphologies showed that the low‐MW PEGs filled molds well. The rheological properties confirmed that the low‐MW PEGs decreased the complex viscosity, and improved the processability. With decreasing PEG MW, the PLA glass‐transition temperature decreased. The nanoindenter data show that the addition of PEG decreased the modulus and hardness of PLA. The morphologies of the tensile samples showed that with increasing PEG MW, the thicknesses of the core layers increased gradually. The elongation at break was improved by approximately 247% with the addition of PEG200. Such methods can produce easily processed biological materials for producing biomedical products. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45194.  相似文献   

16.
In vitro degradation of poly(L -lactic acid) fibers was investigated for a period of 16 weeks in Ringer solution at 37°C. Two sets of fibers, with similar initial mechanical properties, molar mass, and crystallinity content, but markedly different in diameter (72 and 120 μm) were studied. Viscometric molar mass decreased during the immersion time at a faster rate for the thinner fibers compared to the thicker ones. As a consequence, the fiber mechanical properties changed; the elastic modulus was only slightly affected by the molar mass decrease whereas ultimate mechanical properties (stress and strain at break) showed a strong decrease. A quantitative correlation between tensile strength and viscometric-average molar mass was attempted. A possible explanation of the faster degradation rate of the thinner fibers was proposed on the basis of the higher surface/volume ratio and water uptake. Dynamic mechanical properties were also measured as a function of immersion time. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 213–223, 1997  相似文献   

17.
This study examines the influence of three different minerals, that is, clay, calcium carbonate, and quartz on the physical, thermal, and mechanical properties of poly(lactic acid) (PLA)/poly(methyl methacrylate) blend. Rheological behavior and phase structure were initially studied by small-amplitude oscillatory shear rheology. Clay- and quartz-filled materials presented an increase in viscosity at low frequency associated with the presence of a yield stress. However, this behavior was not observed for calcium carbonate filled materials due to a matrix degradation effect. To elucidate this aspect, thermal stability and thermal properties were examined by thermogravimetric analysis and differential scanning calorimetry, showing that calcium carbonate promotes degradation of the PLA phase. No nucleating effect was observed in the presence of the minerals. Dynamical mechanical analysis and mechanical characterization revealed an increase of the overall softening temperature and, a reinforcing effect for clay- and quartz-based composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46927.  相似文献   

18.
聚乳酸/聚乙烯醇纳米纤维的制备及结构   总被引:1,自引:0,他引:1  
以二甲基亚砜为溶剂,制备不同配比的聚乳酸(PLLA)和聚乙烯醇(PVA)的混合溶液,静电纺丝制得PLLA/PVA纳米纤维。采用红外光谱仪、原子力显微镜等对PLLA/PVA纳米纤维结构与性能进行了表征。结果表明:PLLA/PVA纳米纤维中PVA上的羟基与PLLA上的羰基形成了氢键,PLLA与PVA之间存在一定的相互作用,但PLLA/PVA纳米纤维存在相分离现象;混合溶液的PLLA质量分数为11%,PVA质量分数为8%时可以得到较好的PLLA/PVA纳米纤维,但PVA质量分数为6%时出现液滴及珠丝,PVA质量分数为4%时,不能制得纳米纤维。  相似文献   

19.
Poly(l ‐lactic acid) (PLLA) is a good biomedical polymer material with wide applications. The addition of poly(ethylene glycol) (PEG) as a plasticizer and the formation of stereocomplex crystals (SCs) have been proved to be effective methods for improving the crystallization of PLLA, which will promote its heat resistance. In this work, the crystallization behavior of PEG and PLLA/poly(d ‐lactic acid) (PDLA) in PLLA/PDLA/PEG and PEG‐b‐PLLA/PEG‐b‐PDLA blends has been investigated using differential scanning calorimetry, polarized optical microscopy and X‐ray diffraction. Both SCs and homocrystals (HCs) were observed in blends with asymmetric mass ratio of PLLA/PDLA, while exclusively SCs were observed in blends with approximately equal mass ratio of PLLA/PDLA. The crystallization of PEG was only observed for the symmetric blends of PLLA39k/PDLA35k/PEG2k, PLLA39k/PDLA35k/PEG5k, PLLA69k/PDLA96k/PEG5k and PEG‐b‐PLLA31k/PEG‐b‐PDLA27k, where the mass ratio of PLLA/PDLA was approximately 1/1. The results demonstrated that the formation of exclusively SCs would facilitate the crystallization of PEG, while the existence of both HCs and SCs could restrict the crystallization of PEG. The crystallization of PEG is related to the crystallinity of PLLA and PDLA, which will be promoted by the formation of SCs. © 2017 Society of Chemical Industry  相似文献   

20.
直接缩聚合成聚乳酸研究进展   总被引:8,自引:0,他引:8  
聚乳酸是一种性能优良的完全生物降解塑料,产品价格高是其进入市场的重要障碍,通过直接缩聚法有望能合成低 成本的聚乳酸。综述了溶液缩聚及直接熔融缩聚、熔融缩聚-扩链、熔融缩聚-固相聚合合成聚乳酸的研究进展。展望了直接 缩聚法合成聚乳酸的前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号