首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
This paper reports on morphology, rheology and dynamic mechanical properties of polypropylene (PP)/ethylene vinyl acetate (EVA) copolymer/clay nanocomposite system prepared via a single step melt compounding process using a twin screw micro-compounder. Scanning electron microscopic (SEM) investigations revealed that the dispersed phase droplet size was reduced with incorporation of an organo-modified montmorillonite (OMMT). This reduction was more significant in presence of a maleated PP (PP-g-MAH) used as compatibilizer. Phase inversion in the compatibilized blends caused a further decrease in PP droplet size. The OMMT gallery spacing was higher in nanocomposites with EVA as matrix which could be attributed to higher tendency of OMMT nanoparticles towards EVA rather than PP. This enhanced tendency was confirmed by rheological analysis too. Transmission electron microscopy (TEM) results also showed that the majority of OMMT nanoparticles were localized on the interface and within EVA droplets. According to dynamic mechanical analysis, the compatibilized nanocomposites showed higher storage and loss moduli due to better dispersion of OMMT layers. The modulus enhancement of nanocomposites as a function of OMMT volume fraction was modeled by Halpin-Tsai’s-Nielsen expression of modulus for nanocomposites. The results of modeling suggested that the aspect ratio of the intercalated OMMT, in the form of Einstein coefficient (K E), plays a determining role in the modulus enhancement of nanocomposites.  相似文献   

2.
The microstructure and mechanical properties of polypropylene (PP)/OMMT binary nanocomposites and PP/styrene‐6‐(ethylene‐co‐butylenes)‐6‐styrene triblock copolymer (SEBS)/OMMT ternary nanocomposites were investigated using X‐ray diffraction (XRD), transmission electron microscopy (TEM), and rheology and electromechanical testing machine. The results show that the organoclay layers are mainly intercalated and partially exfoliated in the PP‐based nanocomposites. The additions of SEBS and OMMT have no significant effect on the crystallization behavior of PP. At the same time, it can be concluded that the polymer chains of PP and SEBS have intercalated into the organoclay layers and increase the gallery distance after blending process based on the analytical results from TEM, XRD, and rheology, which result in the form of a percolated nanostructure in the PP‐based nanocomposites. The results of mechanical properties show that SEBS filler greatly improve the notched impact strength of PP, but with the sacrifice of strength and stiffness. OMMT can improve the strength and stiffness of PP and slightly enhance the notched impact strength of PP/PP‐g‐MA. In comparison with neat PP, PP/OMMT, and PP/SEBS binary composites, notched impact toughness of the PP/SEBS/OMMT ternary composites significantly increase. Moreover, the stiffness and strength of PP/SEBS/OMMT ternary nanocomposites are slightly enhanced when compared with neat PP. It is believed that the synergistic effect of both SEBS elastomer and OMMT nanoparticles account for the balanced mechanical performance of the ternary nanocomposites. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

3.
Propylene random copolymer (PPR)/styrene‐ethylene‐butylene‐styrene block copolymer (SEBS)/compatibilizer/organic‐montmorillonite (OMMT) quaternary nanocomposites and PPR/compatibilizer/OMMT ternary nanocomposites were prepared via two‐stage melt blending and influences of compatibilizers, maleic anhydride (MA) grafted styrene‐ethylene‐butylene‐styrene copolymer (SEBS‐g‐MA), poly(octene‐co‐ethylene) (POE‐g‐MA), or propylene block copolymers (PPB‐g‐MA), on rheology and mechanical properties of the nanocomposites were investigated. The results of X‐ray diffraction measurement and transmission electron microscopy observation showed that OMMT layers were mainly intercalated in the nanocomposites except for the mainly exfoliated structure in the quaternary nanocomposites using POE‐g‐MA as compatibilizer. The nanocomposites exhibited pseudo‐solid like viscoelasticity in low frequencies and shear‐thinning in high shear rates. As far as OMMT dispersion was concerned, POE‐g‐MA was superior to SEBS‐g‐MA and PPB‐g‐MA, which gives rise to the highest viscosities in both the ternary and quaternary nanocomposites. The quaternary nanocomposites containing POE‐g‐MA were endowed with balanced toughness and rigidity. It was suggested that a suitable combination of compatibilizer and SEBS was an essentially important factor for adjusting the OMMT dispersion and distribution, the rheological and mechanical performances of the nanocomposites. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
用熔体插层法制备甲基乙烯基硅橡胶(MVQ)/有机改性蒙脱土(OMMT)纳米复合材料并研究其微观结构和性能。结果表明:OMMT改性剂疏水性从优到劣的顺序为I.44P,I.30P,Bengel434,I.44P和I.30P在MVQ中的分散性优于Bengel434;MVQ/OMMT纳米复合材料的物理性能和热稳定性从优到劣的顺序为MVQ/I.44P,MVQ/I.30P,MVQ/Bengel434纳米复合材料;添加40份I.44P的MVQ/I.44P纳米复合材料的100%定伸应力、拉伸强度和撕裂强度比纯胶有较大提高。  相似文献   

5.
In this study, nanocomposites based on polyamide 6/carboxylated acrylonitrile butadiene rubber (PA6/XNBR) reinforced by the clay montmorillonite (OMMT) (Cloisite 20A and Cloisite 30B) were prepared by melt mixing. Glycidyl methacrylate-grafted XNBR (XNBR-g-GMA) compatibilizer was used for immiscible blends of PA6/XNBR. The results illustrated that OMMT wanted to be selectively present in the more hydrophilic PA6 phase. Also, by adding the XNBR-g-GMA compatibilizer and increasing OMMT content, tensile strength, rheological and dynamic mechanical properties of the nanocomposites improved. According to transmission electron microscopy (TEM) images, a few layers of OMMT (Cloisite 20A) in the XNBR-g-GMA compatibilizer phase was observed. The results of X-ray diffractometry and TEM analyses demonstrated that the formation of intercalated or exfoliated structures for both types of OMMT nanocomposites. In end of all analysis was found PA6/XNBR reinforced by the Cloisite 30B could be substantially improved by adding XNBR-g-GMA as a compatibilizer when compared to those reinforced by Cloisite 20A.  相似文献   

6.
In this study, poly(ethylene terephthalate)/organo‐montmorillonite (PET/OMMT) nanocomposites were melt‐compounded using twin screw extruder followed by injection molding. Maleic anhydride grafted styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) was used to improve the impact properties of the PET/OMMT nanocomposites. The notched and un‐notched impact strength of PET/OMMT nanocomposites increased at about 2.5 times and 5.5 times by the addition of 5 wt % of SEBS‐g‐MAH. Atomic force microscopy (AFM) scans were taken from the polished surface of both PET/OMMT and SEBS‐g‐MAH toughened PET/OMMT nanocomposites. The addition of SEBS‐g‐MAH altered the phase structure and clay dispersion in PET matrix. It was found that some of the OMMT silicate layers were encapsulated by SEBS‐g‐MAH. Further, the addition of SEBS‐g‐MAH decreased the degree of crystallinity of the PET/OMMT nanocomposites. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

7.
Morphological, melt rheological and dynamic mechanical properties of low-density polyethylene (LDPE)/ethylene–octene copolymer (POE)/organo-montmorillonite (OMMT) nanocomposites, prepared via melt compounding were studied. The XRD traces indicated different levels of intercalated structures for the nanocomposites. Addition of a compatibilizer (PE-g-MA) improved the intercalation process. TEM results revealed existence of clay layers in both phases but they were mainly localized in the elastomeric POE phase. Addition of 5 wt% OMMT to the LDPE/POE blend led to reduction in the size of the elastomer particles confirmed by AFM. The complex viscosity and storage modulus showed little effect of the presence of the clay when no compatibilizer was added. As the extent of exfoliation increased with addition of compatibilizer, the linear viscoelastic behavior of the composites gradually changed specially at low-frequency regions. The interfacially compatibilized nanocomposites with 5 wt% OMMT had the highest melt viscosity and modulus among all the studied nanocomposites and blends. Also, this particular composition showed the best improvement in dynamic storage modulus. The results indicated that clay dispersion and interfacial adhesion, and consequently different properties of LDPE/POE/clay nanocomposites, are greatly affected by addition of compatibilizer.  相似文献   

8.
Polylactic acid (PLA)/organo‐montmorillonite (OMMT) nanocomposites toughened with thermoplastic polyurethane (TPU) were prepared by melt‐compounding on a novel vane extruder (VE), which generates global dynamic elongational flow. In this work, the mechanical properties of the PLA/TPU/OMMT nanocomposites were evaluated by tensile, flexural, and tensile tests. The wide‐angle X‐ray diffraction and transmission electron microscopy results show that PLA/TPU/OMMT nanocomposites had clear intercalation and/or exfoliation structures. Moreover, the particles morphology of nanocomposites with the addition of TPU was investigated using high‐resolution scanning electronic microscopy. The results indicate that the spherical TPU particles dispersed in the PLA matrix, and the uniformity decreased with increasing TPU content (≤30%). Interestingly, there existed abundant filaments among amount of TPU droplets in composites with 30 and 40 wt% TPU. Furthermore, the thermal properties of the nanocomposites were examined with differential scanning calorimeter and dynamic mechanical analysis. The elongation at break and impact strength of the PLA/OMMT nanocomposites were increased significantly after addition of TPU. Specially, Elongation at break increased by 30 times, and notched impact strength improved 15 times when TPU loading was 40 wt%, compared with the neat PLA. Overall, the modified PLA nanocomposites can have greater application as a biodegradable material with enhanced mechanical properties. POLYM. ENG. SCI., 54:2292–2300, 2014. © 2013 Society of Plastics Engineers  相似文献   

9.
Different loadings of organo-montmorillonite (OMMT) were mixed with ultra-high molecular weight polyethylene (UHMWPE)/polypropylene (70/30) composites under elongation flow. Results showed that ideal dispersion of OMMT nanoparticles could be achieved and most OMMTs intercalated and exfoliated effectively. However, the layer spacing of OMMT decreased with the increase in the content of OMMT. UHMWPE was surrounded by the OMMT layers, and its shape evolved from a compatible phase to a sphere. OMMT caused heterogeneous nucleation in the blends, leading to a high crystallisation temperature. Meanwhile, the intercalated and exfoliated OMMTs promoted the motion of polymer chains, and inhibited the crystallisation process of UHMWPE in the composites. The crystallinity of UHMWPE with 5% OMMT markedly decreased from 48.39% to 41.46%. Various rheological analyses confirmed that the complex viscosity of composites and the storage modulus decreased first and then increased with the increase in the content of OMMT. UHMWPE/PP with 5% OMMT exhibited the ideal mobility.  相似文献   

10.
Rheological and thermal properties of isotactic polypropylene (iPP)/organo-montmorillonite (OMMT)/poly(ethylene-co-octene) (PEOc) ternary nanocomposites and iPP/OMMT binary nanocomposites were studied by X-ray diffraction (XRD), rheometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM) in this paper. The clay layers were mainly intercalated and partially exfoliated and well dispersed in these nanocomposites with the help of maleic anhydride modified polypropylene (PPgMA). Clay layers were mainly localized close to/inside the PEOc-rich phase from the direct observation of morphological study. A compact and stable network structure was formed in ternary composites when clay content was 2 phr (parts per hundred parts of iPP/PPgMA) or higher, which resulted in the lower stress relaxation rate and a pseudo-solid like behavior in low frequency region. Compared with iPP/OMMT composites, iPP/OMMT/PEOc composites had a much stronger ability to resist thermal decomposition. In another word, combining with the filler network, PEOc greatly improved the structural and thermal stabilities of iPP/OMMT nanocomposites.  相似文献   

11.
用机械共混法将4种牌号的有机蒙脱土(OMMT)与丁腈橡胶(NBR)/聚氯乙烯(PVC)共混,制备了纳米复合材料,并对其微观结构、硫化特性、力学性能以及耐油性进行了考察.结果表明,该复合材料具有插层型结构;4种牌号的OMMT均能提高共混胶的硫化速率,且能提高纳米复合材料的力学性能,其中牌号为FMR 11的OMMT增强效果最好,当其用量为6份时,纳米复合材料的拉伸强度比纯胶提高了49.96%,撕裂强度提高了36.9%,扯断伸长率也有所提高;随着OMMT用量的增加,纳米复合材料的耐油性逐渐提高.  相似文献   

12.
Poly(lactic acid)/organo‐montmorillonite (PLA/OMMT) nanocomposites toughened with maleated styrene‐ethylene/butylene‐styrene (SEBS‐g‐MAH) were prepared by melt‐compounding using co‐rotating twin‐screw extruder followed by injection molding. The dispersibility and intercalation/exfoliation of OMMT in PLA was characterized using X‐ray diffraction and transmission electron microscopy (TEM). The mechanical properties of the PLA nanocomposites was investigated by tensile and Izod impact tests. Thermogravimetric analyzer and differential scanning calorimeter were used to study the thermal behaviors of the nanocomposite. The homogenous dispersion of the OMMT silicate layers and SEBS‐g‐MAH encapsulated OMMT layered silicate can be observed from TEM. Impact strength and elongation at break of the PLA nanocomposites was enhanced significantly by the addition of SEBS‐g‐MAH. Thermal stability of the PLA/OMMT nanocomposites was improved in the presence of SEBS‐g‐MAH. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

13.
PP/PA6/OMMT复合材料力学性能与结晶性能的研究   总被引:1,自引:0,他引:1  
采用3种不同有机改性过的蒙脱土(牌号为DK2,DK3,DK5)熔融插层法制备了PP/PA6/OMMT纳米复合物材料,在此基础上使用1%~7%的DK2的蒙脱土再次制备PP/PA6/OMMT纳米复合物材料,借助力学性能测试和差示扫描量热法(DSC)对体系的力学性能和结晶性能进行了研究。结果表明:使用DK2制备的复合材料的力学性能优于使用DK3和DK5制备的复合材料的力学性能;相对于纯PP,PP/PA6/OMMT纳米复合物材料随OMMT含量的增加,拉伸强度和弯曲强度是先增加后降低,最大下降幅度分别为8.7%和5.3%;冲击韧性一直上升达到9.61kJ/m2。OMMT的加入,对PP/PA6有异相成核的作用,提高PP/PA6的结晶速率和结晶度。  相似文献   

14.
Polypropylene/organic‐montmorillonite (PP/OMMT) nanocomposites were prepared via a solid‐phase PP graft (TMPP) with a higher grafting level as the compatibilizer. The effects of the compatibilizer on the structure and properties of PP/OMMT nanocomposites were investigated. The structure of the nanocomposites were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results showed that when the weight ratio of TMPP and OMMT is greater than 1:1, the OMMT can be dispersed in PP matrix uniformly at the nanoscale. The mechanical properties of the nanocomposites reached a maximum when the weight ratio of TMPP and OMMT is 1:1, although more uniform dispersion was achieved at a higher content of TMPP. The mechanical properties of the nanocomposites decrease with the content of TMPP. The crystallization behavior, dynamic rheological property, and thermal stability of the nanocomposites were investigated by differential scanning calorimetry (DSC), dynamic rheological analysis, and thermal gravimetric analysis (TGA), respectively. Due to the synergistic effects of TMPP and OMMT on the crystallization of PP, the crystallization peak temperature of the nanocomposites increased remarkably compared with that of the neat PP. TMPP shows β‐phase nucleating ability and OMMT promotes the development of β‐phase crystallite. The nanocomposites show restricted melt flow and enhanced temperature sensitivity compared with the neat PP. The thermal stability of the nanocomposites is obviously improved compared with that of the neat PP. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers.  相似文献   

15.
采用熔融插层法制备了聚乳酸/有机改性纳米蒙脱土(PLA/OMMT)复合材料,对其复合结构、力学性能、热性能、动态流变性能进行了测试和表征,并研究了复合材料的挤出发泡行为。结果表明,不同含量的OMMT与PLA进行熔融插层会形成不同的插层与剥离结构;3 %的OMMT可以提高PLA的力学性能、改善热性能;OMMT能够提升PLA的熔体强度,同时在挤出发泡过程中起到成核剂的作用,并且能够减弱发泡剂气体向PLA熔体外部的扩散,从而提高PLA挤出发泡的效果。  相似文献   

16.
以Gemini双阳离子表面活性剂插层钠基蒙脱土制备了具有不同层间距的有机蒙脱土(OMMT)并用于热塑性聚氨酯(TPU)的改性,考察了OMMT的层间距及用量对该纳米复合材料的热性能和力学性能的影响.DSC结果表明,随着OMMT层间距的增大,软段Tg升高,硬段Tg降低.力学性能结果表明,OMMT的层间距越大,力学性能越好,...  相似文献   

17.
Poly(lactic acid)/organic montmorillonite (PLA/OMMT) nanocomposites were prepared via twin‐screw extrusion. Montmorillonite (MMT) was firstly organically modified to improve the compatibility between polyester and MMT. The effects of ratio between PLA and OMMT and the addition of polycaprolactone (PCL), as a compatilizer, on the properties of PLA/OMMT nanocomposites were studied. The morphology and the properties of the nanocomposites were characterized by XRD, DSC, and TEM. Using OMMT, the intercalated structure was formed during the extrusion process and the OMMT interlayers space was enlarged. More OMMT content was apt to form thicker structure with more stacked individual silicate layers, which led to lower degree of crystallinity of PLA. It showed that 1 phr OMMT could result in the largest interlayers space and the best crystallization state. PCL can effectively increase the binding force between two phases and improve the order of the nanocomposites. In addition, the annealing after treatment can form regular structure and enhance the thermal properties of nanocomposites. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

18.
Intercalated nanocomposites comprised of poly(propylene carbonate) (PPC) and organo-montmorillonite (OMMT) were prepared via a direct melt blending method. The morphological, thermal, rheological, mechanical, and gas barrier properties of composites were carried out in detail. Results of XRD, TEM, and SEM revealed that OMMT dispersed homogeneously in the polymer matrix, and were intercalated by PPC macromolecules. Compared with neat PPC, the PPC/OMMT nanocomposites showed an enhancement in the 5 wt% weight loss temperature (T ?5%) by near 20 °C with 3 phr OMMT concentration. With the percolation threshold formed, the rheological properties of composites translated from a liquid-like behavior to a solid-like one. Interestingly, PPC/OMMT nanocomposites revealed a concurrent improvement in the modulus, yield strength, and toughness with the addition of homogeneously dispersed clay. The oxygen permeability of well-dispersed PPC/OMMT nanocomposites reduced significantly compared with that of neat PPC. Consequently, this convenient and effective method, which facilitates to prepare PPC/OMMT nanocomposites with superior mechanical properties and excellent gas barrier performances, can be considered to broaden the application of PPC.  相似文献   

19.
This study focuses on the compatibilization of poly(lactic acid) (PLA)/thermoplastic polyurethane (TPU) blends by using 1,4 phenylene diisocyanate (PDI) for the first time, as the compatibilizer. Because of the potential interactions of diisocyanates with ? OH/? COOH, they are useful for reactive processing of PLA/TPU blends in the melt processing. To have insight on the reactively compatibilized structure of PLA/TPU blends, phase morphologies are observed by means of scanning electron microscopy. The mechanical, thermal, and rheological responses of the blends are investigated. The observations are that the brittle behavior of PLA changes to ductile with the addition of TPUs. The addition of PDI improves the tensile properties of the blends. The compatibilization action of PDI is monitored with DMA and rheological experiments. Cross‐over in the G′ and G″ curves of compatibilized blends indicates the relaxation of branches formed in the presence of PDI. The dispersed phase size of TPU decreases in PLA in the presence of PDI due to the improved compatibility. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40251.  相似文献   

20.
Three kinds of novel organic montmorillonites (OMMTs) were prepared by reacting the amino polyhedral oligomeric silsesquioxanes (POSSs) with the OMMTs that had already been modified by cationic surfactants. The layer spacing of OMMT increased from 1.68 to 3.81 nm after being intercalated by POSS. Poly(l ‐lactide) (PLLA) based nanocomposites with montmorillonites were produced by melt compounding. The PLLA nanocomposites with POSS modified OMMT were comprised of a random dispersion of intercalated/exfoliated aggregates of layered silicates throughout the PLLA matrix. The incorporation of POSS modified OMMT resulted in a significant increase in both crystallization temperature and decomposition temperature for 5% weight loss in comparison with the virgin PLLA. Gas Permeation Analysis showed that the increase of the montmorillonite concentration in the polymer matrix led to an expected decrease in permeation values. Gas barrier properties of the nanocomposites were compared with those predicted by phenomenological models such as the Nielsen model and Cussler model. POLYM. ENG. SCI., 54:2489–2496, 2014. © 2013 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号