首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interfacial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile–butadiene–styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate‐co‐maleic anyhydride) (MMA‐MA) and poly(methyl methacrylate‐co‐glycidyl methacrylate) (MMA‐GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (~5%) and small amounts of compatibilizer in the blend (~5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 842–847, 2003  相似文献   

2.
Blends of polyethylene terephthalate (PET) and polypropylene (PP) at compositions 20/80 and 80/20 were modified with three different styrene–ethylene/butyl–ene-styrene (SEBS) triblock copolymers with the aim of improving the compatibility and in particular the toughness of the blends. The compatibilizers involved an unfunctionalized SEBS and two functionalized grades containing either maleic anhydride (SEBS-g-MAH) or glycidyl methacrylate (SEBS-g-GMA) grafted to the midblock. The effects of the compatibilizers were evaluated by studies on morphology and mechanical, thermal and rheological properties of the blends. The additon of 5 wt % of a SEBS copolymer was found to stabilize the blend morphology and to improve the impact strength. The effect was, however, far more pronounced with the functionalized copolymers. Particularly high toughness combined with rather high stiffness was achieved with SEBS-g-GMA for the PET-rich composition. Addition of the functionalized SEBS copolymers resulted in a finer dispersion of the minor phase and clearly improved interfacial adhesion. Shifts in the glass transition temperature of the PET phase and increase in the melt viscosity of the compatibilized blends indicated enhanced interactions between the discrete PET and PP phases induced by the functionalized compatibilizer, in particular SEBS-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:241–249, 1997  相似文献   

3.
相容剂对PC/ABS合金性能的影响   总被引:21,自引:4,他引:17  
研究了自制的两种相容剂对PC/ABS合金的力学性能、应力开裂性能和熔体流动速率的影响,并用SEM研究了共混体系的相容性。结果表明,相容剂A[(苯乙烯/马来酸酐)共聚物]和相容剂B(ABS接枝共聚物),均可提高共混体系中两组分的相容性。A、B的最佳用量分别为2%和5%。  相似文献   

4.
The objective of this work was to study the compatibilizer effect on polypropylene (PP) and acrylonitrile butadiene styrene (ABS) blends. The blends were coextruded and injection molded in various ratios of ABS with and without compatibilizers. Universal testing machine was employed to analyze the tensile properties of basic PP/ABS binary blends. From the mechanical testing, the impact and tensile properties of PP/ABS blend were optimized at 80/20 weight ratio. Various compatibilizers such as PP-g-MAH, SEBS-g-MAH and ethylene α-olefin copolymer were used and their comparative performance on binary blend was enumerated. Hybrid compatibilization effect was also studied and reported. However, the addition of compatibilizers showed the maximum increase in impact strength attributed to rubber toughening effect of ABS. The effect of compatibilizers on morphological properties was examined using scanning electron microscopy (SEM). SEM micrographs depicted the more efficient dispersion of ABS particles in PP matrix with the addition of compatibilizers. Further, interparticle distance analysis was carried out to evaluate the rubber toughening effect. The ABS droplet size in compatibilized PP/ABS blend was brought to minimum of 3.2 μm from 9.9 μm with the addition of compatibilizers. The melt rheology of PP/ABS blend systems was investigated through parallel plate arrangement in frequency sweep. Linear viscoelastic properties like storage (G′) and loss (G″) modulus and complex viscosity (η*) have been reported with reference to the virgin materials. It is understood that the combination of compatibilizers (hybrid compatibilizer) had a considerable effect on the overall blend properties.  相似文献   

5.
The ethylene-co-glycidyl methacrylate (EG) copolymer is an efficient reactive compatibilizer for polymer blends of poly(butylene terephthalate) (PBT) and polypropylene (PP). During melt processing, the epoxy functional group of the EG copolymer can react with the PBT carboxylic acid and/or hydroxyl terminal groups at the interface to form various EG-g-PBT copolymers. These in situ formed grafted copolymers tend to concentrate along the interface to reduce the interfacial tension at the melt and result in finer phase domains. Higher glycidyl methacrylate (GMA) content in the EG copolymer or a higher quantity of the EG compatibilizer in the blend results in a better compatibilized blend in terms of finer phase domains, higher viscosity, and better mechanical properties. The presence of only 50 ppm catalyst (ethyltriphenyl phosphonium bromide) in the EG compatibilized blend further improves the blend compatibility substantially. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Amorphous polyamide (aPA)/acrylonitrile‐styrene copolymer (SAN) blends were prepared using methyl methacrylate‐maleic anhydride copolymer MMA‐MA as compatibilizer. The aPA/SAN blends can be considered as a less complex version of the aPA/ABS (acrylonitrilebutadiene‐styrene) blends, due to the absence of the ABS rubber phase in the SAN material. It is known that acrylic copolymer might be miscible with SAN, whereas the maleic anhydride groups from MMA‐MA can react in situ with the amine end groups of aPA during melt blending. As a result, it is possible the in situ formation of aPA‐g‐MMA‐MA grafted copolymers at the aPA/SAN interface during the melt processing of the blends. In this study, the MA content in the MMA‐MA copolymer and its molecular weight was varied independently and their effects on the blend morphology and stress–strain behavior were evaluated. The morphology of the blends aPA/SAN showed a minimum in the SAN particle size at low amounts of MA in the compatibilizer, however, as the MA content in the MMA‐MA copolymer was increased larger SAN particle sizes were observed in the systems. In addition, higher MA content in the compatibilizer lead to less ductile aPA/SAN blends under tensile testing. The results shown the viscosity ratio also plays a very important role in the morphology formation and consequently on the properties of the aPA/SAN blends studied. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
Polymer blend systems offer a versatile approach for tailoring the properties of polymer materials for specific applications. In this study, we investigated the compatibility of polybutylene terephthalate (PBT) and poly(ethylene glycol) (PEG) blends processed using a twin-screw extruder, with the aim of enhancing their compatibility. Phthalic anhydride (PAn) and phthalic acid (PAc) were used as potential compatibilizers at different concentrations to improve interfacial interactions between PBT and PEG. Blend morphologies were characterized using scanning electron microscopy, which revealed improved interfacial compatibility and reduced phase separation with the incorporation of small amounts of PAn and PAc. Differential scanning calorimetry analysis indicated changes in the melting temperature (Tm) and glass transition temperature (Tg) of the blends owing to the compatibilizing effects of PAn and PAc. Dynamic mechanical analysis further corroborated the influence of the compatibilizers on the Tg and viscoelastic behavior. Thermogravimetric analysis demonstrated enhanced thermal stability with the addition of either PAn or PAc. Rheological measurements indicated an increase in complex viscosity with increasing compatibilizer content, indicating improved compatibility. The degradation point (Td) of PBT/PEG blend increased from 158 to 200 and 319°C with the incorporation of 5 phr PAn and 2 phr PAc, respectively. Mechanical properties, including tensile strength, Young's modulus, and Izod impact strength, were evaluated. For instance, the tensile strength of PBT/PEG blend was enhanced from 43.5 to 48.7 and 49.7 MPa by incorporating 5 phr PAn and 2 phr PAc, respectively. However, the impact strength of PBT/PEG blend increased from 3.0 to 4.3 and 4.2 kJ/m2 with the addition of 1 phr PAn and 1 phr PAc, respectively. The findings demonstrated that adding 5 phr PAn or 2 phr PAc to the PBT/PEG blends was advantageous, achieving a harmony of performance benefits and compromises. Rheological observations contributed significantly to the mechanical and thermal properties. Overall, the study highlights the significance of utilizing PAn and PAc as effective compatibilizers for enhancing the properties of PBT/PEG blends, making them potential candidates for various applications.  相似文献   

8.
研究了3种不同结构的相容剂对聚对苯二甲酸丁二醇酯/丙烯腈-丁二烯-苯乙烯三元共聚物(PBT/ABS)共混合金的力学性能和熔体流动速率的影响,并采用扫描电镜和差示扫描量热仪对PBT/ABS共混合金的相界面、相容性及结晶度进行了表征。结果表明,带有环氧官能团的相容剂KS-TD-00202能有效地提高PBT/ABS共混合金的相容性,在提高共混合金缺口冲击强度的同时,不降低拉伸强度和弯曲强度,也不影响共混合金的加工流动性,同时提高了PBT在共混合金中的结晶度。  相似文献   

9.
In this work, blends of poly(butylene terephthalate) (PBT) and linear low‐density polyethylene (LLDPE) were prepared. LLDPE was used as an impact modifier. Since the system was found to be incompatible, compatibilization was sought for by the addition of the following two types of functionalized polyethylene: ethylene vinylacetate copolymer (EVA) and maleic anhydride‐grafted EVA copolymer (EVA‐g‐MAH). The effects of the compatibilizers on the rheological and mechanical properties of the blends have been also quantitatively investigated. The impact strength of the PBT–LLDPE binary blends slightly increased at a lower concentration of LLDPE but increased remarkably above a concentration of 60 wt % of LLDPE. The morphology of the blends showed that the LLDPE particles had dispersed in the PBT matrix below 40 wt % of LLDPE, while, at 60 wt % of LLDPE, a co‐continuous morphology was obtained, which could explain the increase of the impact strength of the blend. Generally, the mechanical strength was decreased by adding LLDPE to PBT. Addition of EVA or EVA‐g‐MAH as a compatibilizer to PBT–LLDPE (70/30) blend considerably improved the impact strength of the blend without significantly sacrificing the tensile and the flexural strength. More improvement in those mechanical properties was observed in the case of the EVA‐g‐MAH system than for the EVA system. A larger viscosity increase was also observed in the case of the EVA‐g‐MAH than EVA. This may be due to interaction of the EVA‐g‐MAH with PBT. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 989–997, 1999  相似文献   

10.
Poly(butylene terephthalate) (PBT), a thermoplastic polyester, was melt blended with acrylonitrile-butadiene-styrene (ABS) terpolymer using styrene-maleic anhydride (SMA) as the compatibilizer. The PBT : ABS ratio was fixed at 70 : 30 by weight and weight percent (wt %) of SMA was varied as 2.5, 5, and 7.5. The effect of variation of the SMA percent in the blend was studied by calculating and comparing the theoretical tensile strength values with the experimental ones. The adhesive strength (σ) and the interaction parameter (I) were also determined. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 1485–1487, 1997  相似文献   

11.
Effects of compatibilizers on impact properties of polypropylene/ polystyrene (PP/PS) blends were studied and carried out through melt blending using co- rotating twin-screw extruder. A combination of two compatibilizers, maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride (SMA) was applied into PP/PS blends. Results from the Izod impact strengths, SEM observations and contact angle measurements in PP(50)/PS(50) blends indicated a better compatibilization effect with the use of dual compatibilizers. This was most probably due to improved adhesion between phases in PP/PS blend systems. The use of dual compatibilizers in the blend compositions produced higher impact properties in the PP/PS blend systems compared to single compatibilizer system.  相似文献   

12.
对增韧聚碳酸酯(PC)/聚酯[聚对苯二甲酸乙二醇酯(PET)和聚对苯二甲酸丁二醇酯(PBT)]合金进行了研究,结合合金的相形貌结果,分别选择PC和聚酯是连续相的合金进行了研究,同时对比了相同树脂比例下PC/PET和PC/PBT之间性能的差别。增韧剂选择甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物(MBS)或MBS和接枝环氧基团的丙烯酸酯类增韧剂(X-GM A)复配物。结果表明,使用相同的增韧剂,PC是连续相的情况下,冲击强度更高,相同树脂比例情况下,PC/PET合金冲击强度比PC/PBT的差,拉伸和弯曲强度相差不大,PC/PET合金的熔体稳定性能比PC/PBT的差,PC是连续相合金的熔体稳定性比聚酯是连续相的要好,含有X-GMA的合金熔体稳定性能更好,这些结果和酯基的热分解、PET分子链运动活性比PBT的差以及酯交换程度的差异等有直接的关联。  相似文献   

13.
The ductile–brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile‐butadiene‐styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate‐co‐maleic anhydride (MMA‐MAH) and MMA‐co‐glycidyl methacrylate (MMA‐GMA). The ductile–brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA‐MAH compatibilizer were supertough and showed a ductile–brittle transition temperature at ?10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA‐GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2643–2647, 2003  相似文献   

14.
ABS-g-GMA增韧聚对苯二甲酸丁二醇酯的研究   总被引:5,自引:0,他引:5  
用甲基丙烯酸环氧丙酯((MA)接枝的丙烯腈/丁二烯/苯乙烯(ABs)接枝共聚物(ABS-g-GMA)改善聚对苯二甲酸丁二醇酯(PBT)的缺口冲击韧性。动态力学分析、差示扫描量热分析以及流变性能测试结果表明,GMA引入到ABS中,随GMA含量的增加,PBT与ABS的玻璃化转变温度相互靠近,PBT的熔点降低,共混体系的扭矩、温度提高,这些结果表明GMA提高了PBT与ABS之间的相容性;增容反应导致ABS在PBT基体中均匀、稳定分散,有利于共混物性能的改善;交联反应导致交联聚集网状结构的生成,使共混物性能变差。冲击强度结果表明,1%(质量含量。下同)GMA含量就可以导致PBT/ABS-g-GMA共混物冲击韧性显著改善,当ABS-g-GMA1含量为30%时,共混物冲击强度高达850J/m。  相似文献   

15.
The effects of blend composition, melt viscosity of poly(acrylonitrile-butadiene-styrene) (ABS), and compatibilizing effect of poly(methyl methacrylate) (PMMA) on mechanical properties of ABS/polycarbonate (PC) blends at ABS-rich compositions were studied. As the content of PC was increased, impact strength and Vicat softening temperature (VST) were increased. As the melt viscosity of ABS was increased near to that of PC, finer distribution of dispersed PC phase and consequent enhanced impact strength and VST were observed. The compatibilizing effect of PMMA can be ascer-tained from the enhanced properties of ¼-inch notch impact strength, VST, tensilestrength, and the morphology observed by a scanning electron microscope. The improved adhesion of the ABS/PC interface by PMMA changed the fracture mechanism and reduced the notch sensitivity of blends. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 533–542, 1998  相似文献   

16.
The effects of reactive compatibilizer and processing temperature on the morphology and the mechanical properties at the weld line of 60/40 (wt/wt) poly- carbonate (PC) and acrylonitrile-butadiene-styrene (ABS) copolymer blends were investigated. Amine functionalized styrene/n-phenyl maleimide/maleic anhydride terpolymer (amine-SPMIMA) was used as the in-situ reactive compatibilizer for PC/ABS blend. Weld tensile strength increased as the content of amine-SPMIMA was increased. Weld impact strength showed maximum value for the blend containing about 3% amine-SPMIMA. The variation in the mechanical property at the weld line was correlated with the change in the morphology of the blend. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
To evaluate mechanical properties of blends prepared by intermeshing corotating twin‐screw extrusion (ICTSE), it is usually necessary to injection mold specimens after the extrusion mixing process. At this study an alternative method is used to obtain testing specimens from ribbons extruded polybutylene terephthalate/acrylonitrile–butadiene–styrene blends, (PBT/ABS), compatibilized with methyl methacrylate–glycidyl methacrylate‐ethyl acrylate (MGE) by ICTSE, and then to correlate their mechanical properties with the processing parameters. Regarding to the extrusion process parameters, it has been noted that higher feed rates, lower screw speeds and narrower kneading blocks have reduced the ductile‐brittle transition temperature (DBTT) of the compatibilized PBT/ABS blends, thereby suggesting that the molecule integrity of blend polymeric components has been preserved and that a good dispersion of the ABS domains in the PBT matrix has been achieved. Injection molded PBT/ABS blends were obtained to compare to the extruded ribbons. The mechanical tests for both specimens have shown the same trends. The injection molded samples have presented poorer impact strength, tensile strain at break and tensile strength, when compared to the respective extruded samples. That behavior has been attributed to the high level of molecular orientation resulting from the injection molding process and mainly to PBT degradation during process. The PBT degradation could have increased its degree of crystallinity, which has been confirmed by DSC measurements. As result, the blend became more brittle, decreasing its Izod impact strength. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

18.
Ternary in‐situ poly(butylene terephthalate) (PBT)/poly(acrylonitrile‐butadienestyrene) (ABS)/liquid crystalline polymer(LCP) blends were prepared by injection molding. The LCP used was a versatile Vectra A950, and the matrix material was PBT/ABS 60/40 by weight. Maleic anhydride (MA) copolymer and solid epoxy resin (bisphenol type‐A) were used as compatibilizers for these blends. The tensile, dynamic mechanical, impact, morphology and thermal properties of the blends were studied. Tensile tests showed that the tensile stregth of PBT/ABS/LCP blend in the longitudinal direction increased markedly with increasing LCP content. However, it decreased sharply with increasing LCP content up to 5 wt%; thereafter it decreased slowly with increasing LCP content in the transverse direction. The modulus of this blend in the longitudinal direction appeared to increase considerably with increasing LCP content, whereas the incorporation of LCP into PBT/ABS blends had little effect on the modulus in the transverse direction. The impact tests revealed that the Izod impact strength of the blends in longitudinal direction decreased with increasing LCP content up to 10 wt%; thereafter it increased slowly with increasing LCP. Dynamic mechanical analyses (DMA) and thermogravimetric measurements showed that the heat resistance and heat stability of the blends tended to increase with increasing LCP content. SEM observation, DMA, and tensile measurement indicated that the additions of epoxy and MA copolymer to PBT/ABS matrix appeared to enhance the compatibility between PBT/ABS and LCP.  相似文献   

19.
尼龙6/ABS合金的结构与性能   总被引:6,自引:1,他引:6  
研究了以自制的马来酸酐直接枝改性ABS代替了或作为增容剂使用形成的尼龙6/ABS合金的结构与性能,研究结果表明,接枝改性可以提高ABS在基体树脂中的分散性,改善共混组分间的相容性,引起体系结晶熔融行为的改变;随ABS接板率的上升,尼龙6/ABS合金的冲击强度提高,当接枝ABS作为增容剂使用时,随增容剂用量增加,材料的冲击强度呈提高趋势;保持增容剂与ABS的比例,增加尼龙6含量时,尼龙6/ABS合金  相似文献   

20.
Blends of acrylonitrile-butadiene-styrene (ABS) and Nylon 6 (PA6) incorporating styrene-acrylonitrile-glycidyl methacrylate (SAGMA) copolymer as compatibilizer have been studied across five different compositions by varying the PA6 ratio from 15 wt% to 55 wt%. The evolution of morphology from discrete dispersed PA6 particles to phase inversion to co-continuous phases effected due to the compatibilizer have been studied vis-à-vis preliminary melt flow analysis, viscoelastic behavior, physico-mechanical and thermal properties of the blends. Single point viscosity measurements during melt flow analyses are indicative of a significant increase in viscosity upon initial incorporation of PA6 followed by narrow increases with content. It is observed that while there are gradual positive modifications in physico-mechanical properties with increasing PA6 content, the most significant improvements are observed for room temperature izod impact strength and break elongation effected in the region of phase inversion on to the formation of a co-continuous phase. The low temperature impact strength at −40 °C essentially remains comparable to that of control ABS. DMTA analysis evidences partial dissolution of the blend components by the shifts of the damping peaks (Tg) of PB rich phase, SAN and PA6. Broadening of the damping peak of PB rich phase of ABS is attributed to increasing interfacial region due to PA6-g-SAGMA molecular layer at the interface. Thermal stability of the blends were not significantly affected in comparison to control ABS and PA6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号