首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper will develop a new robust topology optimization method for the concurrent design of cellular composites with an array of identical microstructures subject to random‐interval hybrid uncertainties. A concurrent topology optimization framework is formulated to optimize both the composite macrostructure and the material microstructure. The robust objective function is defined based on the interval mean and interval variance of the corresponding objective function. A new uncertain propagation approach, termed as a hybrid univariate dimension reduction method, is proposed to estimate the interval mean and variance. The sensitivity information of the robust objective function can be obtained after the uncertainty analysis. Several numerical examples are used to validate the effectiveness of the proposed robust topology optimization method.  相似文献   

2.
The main aim of this article is to present a robust microstructural topology optimization methodology for structural–acoustic coupled systems with multi-scale random parameters. During the microstructural topology optimization, both the uncertainty at the macro-scale, which comes from the physical parameters of the acoustic medium or the external load, and the uncertainty existing in the constituent material properties of the microstructure at the micro-scale are considered as random parameters. A homogenization-based probabilistic finite element method (HPFEM) is first developed for quantifying the structural–acoustic system with multi-scale random parameters. The use of the HPFEM transforms the problem of microstructural topology optimization with multi-scale random parameters to an augmented deterministic microstructural topology optimization problem. This provides a computationally cheap alternative to Monte Carlo-based optimization algorithms. A numerical example of a hexahedral box is given to demonstrate the efficiency of the proposed method.  相似文献   

3.
The topology optimization problem of a continuum structure on the compliance minimization objective is investigated under consideration of the external load uncertainty in its application position with a nonprobabilistic approach. The load position is defined as the uncertain-but-bounded parameter and is represented by an interval variable with a nominal application point. The structural compliance due to the load position deviation is formulated with the quadratic Taylor series expansion. As a result, the objective gradient information to the topological variables can be evaluated efficiently in a quadratic expression. Based on the maximum design sensitivity value, which corresponds to the most sensitive compliance to the uncertain loading position, a single-level optimization approach is suggested by using a popular gradient-based optimality criteria method. The proposed optimization scheme is performed to gain the robust topology optimizations of three benchmark examples, and the final configuration designs are compared comprehensively with the conventional topology optimizations under the loading point fixation. It can be observed that the present method can provide remarkably different material layouts with auxiliary components to accommodate the load position disturbances. The numerical results of the representative examples also show that the structural performances of the robust topology optimizations appear less sensitive to the load position perturbations than the traditional designs.  相似文献   

4.
This paper addresses material nonlinear topology optimization considering the von Mises criterion by means of an asymptotic analysis using a fictitious nonlinear elastic model. In this context, we consider the topology optimization problem subjected to prescribed energy, which leads to robust convergence in nonlinear problems. Two nested formulations are considered. In the first, the objective is to maximize the strain energy of the system in equilibrium, and in the second, the objective is to maximize the load factor. In both cases, a volume constraint is imposed. The sensitivity analysis is quite effective and efficient in the sense that there is no extra adjoint equation. In addition, the nonlinear structural equilibrium problem is solved using direct minimization of the structural strain energy using Newton's method with an inexact line-search strategy. Four numerical examples demonstrate the features of the proposed material nonlinear topology optimization framework for approximating standard von Mises plasticity.  相似文献   

5.
将稳定性问题引入传统变密度法中,可实现包含稳定性约束的平面模型结构拓扑优化。以单元相对密度为设计变量,结构柔度最小为目标函数,结构体积和失稳载荷因子为约束条件建立优化问题数学模型,提出了一种考虑结构稳定性的变密度拓扑优化方法。通过分析结构柔度、体积、失稳载荷因子对设计变量的灵敏度,并基于拉格朗日乘子法和Kuhn-Tucker条件,推导了优化问题的迭代准则。同时,利用基于约束条件的泰勒展开式求解优化准则中的拉格朗日乘子。通过推导平面四节点四边形单元几何刚度矩阵的显式表达式,得到了优化准则中的几何应变能。最后,通过算例对提出的方法进行了验证,并与不考虑稳定性的传统变密度拓扑优化方法进行对比,结果表明该方法能显著提高拓扑优化结果的稳定性。研究结果对细长受压结构的优化设计有重要指导意义,对结构的稳定性设计有一定参考价值。  相似文献   

6.
Uncertainty factors play an important role in the design of periodic structures because structures with small periodic design spaces are extremely sensitive to loading uncertainty. Therefore, for the first time, this paper proposes a framework for robust topology optimization (RTO) of periodic structures assuming that load uncertainties follow a Gaussian distribution. In this framework, the expected value and variance of structural compliance can be easily computed using a semianalytical method combined with probability theory, which is important for RTO when uncertain variables follow probabilistic distributions. To obtain optimal topologies, the bidirectional evolutionary structural optimization method is used. Structural periodicity is calculated using a strategy of sensitivity averaging and consistency constraints. To eliminate the influence of numerical units when comparing the optimal results to deterministic and RTO solutions, a generic coefficient of variation is defined as the robust index, which contains both the expected value and variance. The proposed framework is verified through the optimization of both 2D and 3D structures with periodicity. Computational results demonstrate the feasibility and effectiveness of the proposed framework for designing robust periodic structures under loading uncertainties.  相似文献   

7.
针对复合材料微结构的内部构型和宏观排布的可设计性,以结构基频最大和柔度最小加权系数为目标,将微结构设计和多尺度计算结合,建立了考虑静动力学特性的材料/结构一体化多目标优化设计模型,实现了相应的算法和算例.方法中引入了微观和宏观两个尺度上的独立密度变量,采用RAMP(Rational Approximation ofMaterial Properties)方法对密度进行惩罚,利用有限元超单元技术建立材料与结构的联系,通过规一化目标函数有效避免了不同性质目标函数的量级差异.通过算例,获得了静动态权重系数对结构拓扑构型和目标函数(宏观结构的柔度和基频)的影响规律.研究结果表明:该方法是有效的,可作为对轻质结构进行静动态多目标优化设计的一种新方法.  相似文献   

8.
针对稳态热传导问题,以结构散热弱度最小为目标,建立了连续体传热结构的拓扑优化模型和方法,给出了相应的算例。优化方法中分别建立了设计相关载荷和非相关载荷的灵敏度列式,采用Rational Approximation of Material Properties (RAMP)方法对材料密度进行惩罚,利用优化准则法控制设计目标与材料分布,以敏度过滤技术抑制棋盘格效应。算例的结果直观显示了设计相关载荷和非设计相关载荷以及复合载荷对结构拓扑构型的影响规律,表明了该文考虑设计相关载荷的稳态热传导结构拓扑优化方法的合理性。  相似文献   

9.
提出应用连续体结构拓扑优化ICM法对高层建筑大型支撑体系进行拓扑优化。针对高层建筑规范对结构刚度限值是以层间相对位移差形式给出、并结合结构拓扑优化特点,推导了相对位移差敏度分析的伴随法公式,有效提高了计算效率。应用ICM法建立位移约束下结构重量极小化的优化模型,与高层建筑规范对结构刚度限值要求的提法更符合,得到的最优拓扑完全满足规范要求。所提方法应用在概念设计阶段,提供了一种自动化的分析计算及优化设计工具,可以有效地弥补基于经验设计的不足。  相似文献   

10.
傅继阳  吴玖荣  徐安 《工程力学》2022,39(5):13-33+43
高层建筑由于自振周期长、阻尼小,其高柔的特征使其对风荷载特别敏感,风荷载是沿海地区超高层建筑的主要水平控制荷载,因此在强/台风作用下,其抗风设计须在满足规范安全要求的前提下,同时又要经济实用和结构性能高效,为此,开展高层建筑抗风优化和风振控制方面的研究具有十分重要的现实意义。该文在对高层建筑抗风优化设计和风振控制研究现状做简要介绍的基础上,首先根据风荷载的特点,着重研究了考虑风速风向联合概率分布和基于可靠度及性能化的高层建筑抗风设计方法,采用最优准则法,以结构的总重或总造价为目标函数,以顶部位移、层间侧移以及顶部风致加速度为约束条件,对高层建筑结构杆件截面抗风优化设计的相关问题进行了研究。同时为提高基因遗传智能优化算法的收敛速度和获得最可能优化解,该文提出了传统基因遗传的改进算法(如基于改进罚函数及分级遗传算法)用于结构抗风优化设计。在结构拓扑抗风优化方面,则主要引入分层优化的概念,对变密度法和改进动态进化率的双向渐进拓扑优化方法,应用于抗风结构的拓扑构型优化算法进行了相关研究。通过实例分析验证了上述结构抗风优化算法的高效和正确性。在风振控制方面,该文结合摩擦摆系统和调谐质量阻尼器各自的优点,提出了摩擦摆调谐质量阻尼器(FPS-TMD)被动控制系统,对其力学和动力特性,以及高层建筑顶部带FPS-TMD系统的风振控制理论,进行了相关研究。以结构控制第三代Benchmark模型为实例,研究顶部带FPS-TMD系统的高层建筑风振控制效果,同时结合该文开发的基于小型电振动台的实时混合实验测试平台,采用风振控制实时混合实验结果与理论模拟计算结果的对比,验证了该文提出的FPS-TMD被动控制系统,应用于高层建筑风振控制的有效性。  相似文献   

11.
In the present paper, design problems of maximizing the structural stiffness or natural frequency are considered subject to the material volume constraint. A new element replaceable method (ERPM) is proposed for evolutionary topology optimization of structures. Compared with existing versions of evolutionary structural optimization methods, contributions are twofold. On the one hand, a new automatic element deletion/growth procedure is established. The deletion of a finite element means that a solid element is replaced with an orthotropic cellular microstructure (OCM) element. The growth of an element means that an OCM element is replaced with a solid element of full materials. In fact, both operations are interchangeable depending upon how the value of element sensitivity is with respect to the objective function. The OCM design strategy is beneficial in preventing artificial modes for dynamic problems. Besides, the iteration validity is greatly improved with the introduction of a check position (CP) technique. On the other hand, a new checkerboard control algorithm is proposed to work together with the above procedure. After the identification of local checkerboards and detailed structures over the entire design domain, the algorithm will fill or delete elements depending upon the prescribed threshold of sensitivity values. Numerical results show that the ERPM is efficient and a clear and valuable material pattern can be achieved for both static and dynamic problems.  相似文献   

12.
In this paper, topology optimization of composite material plate with respect to minimization of the sound power radiation has been studied. A new low noise design method based on topology optimization is proposed, which provides great guidance for acoustic designers. The structural vibrations are excited by external harmonic mechanical load with prescribed frequency and amplitude. The sound power is calculated using boundary element method. An extended solid isotropic material with penalization (SIMP) model is introduced for acoustic design sensitivity analysis in topology optimization, where the same penalization is applied for the stiffness and mass of the structural volume elements. Volumetric densities of stiffer material are chosen as design variables. Finally, taking a simple supported thin plate as a simulation example, the sound power radiation from structures subjected to forced vibration can be considerably reduced, leading to a reduction of 20 dB. It is shown that the optimal topology is easy to manufacture at low frequency, while as the loading frequency increases, the optimal topology shows a more and more complicated periodicity which makes it difficult to manufacture.  相似文献   

13.
This paper discusses a global optimization method of robust truss topology under the load uncertainties and slenderness constraints of the member cross-sectional areas. We consider a non-stochastic uncertainty of the external load, and attempt to minimize the maximum compliance corresponding to the most critical load. A design-dependent uncertainty model in the external load is proposed in order to consider the variation of truss topology rigorously. It is shown that this optimization problem can be formulated as a 0–1 mixed integer semidefinite programming (0–1MISDP) problem. We propose a branch-and-bound method for computing the global optimal solution of the 0–1MISDP. Numerical examples illustrate that the topology of robust optimal truss depends on the magnitude of uncertainty. The presented method can provide global optimal solutions for benchmark examples, which can be used for evaluating the performance of any other local optimization method for robust structural optimization.  相似文献   

14.
受到可制造性的约束,拓扑优化技术目前多用于结构的概念设计,因此,研究直接面向加工制造的拓扑优化方法很有必要。该文基于启发式BESO(Bi-directional Evolutionary Structural Optimization)算法,提出了一种高效的可精确控制结构最小尺寸的拓扑优化方法。通过灵敏度插值,细化边界单元,改进BESO算法,解决边界不光滑问题;采用拓扑细化方法,提取拓扑结构的骨架构型;以此为基础,判定结构中不满足最小尺寸约束的部位,基于改进的BESO算法,实现拓扑优化结构的最小尺寸精确控制;此外,在优化过程中,通过松弛施加最小尺寸约束的方法,有效避免优化早熟问题。数值算例表明了该拓扑优化方法的有效性。  相似文献   

15.
提出了将设计和分析、拓扑与形状优化集成的思想,探索了基于等几何裁剪分析的拓扑与形状集成优化设计算法,该方法统一了结构优化的计算机辅助设计、计算机辅助工程分析和优化设计的模型,基于B样条的等几何裁剪分析既能准确表达几何形状,又可以用裁剪面分析方便处理任意复杂拓扑优化问题,由裁剪选择标准确定合理的拓扑结构变动方向,结构变动时无需重新划分网格,设计结果突破初始设计空间的限制,还可方便优化形状。建立了等几何裁剪灵敏度分析的计算方法,给出了等几何裁剪分析拓扑与形状集成优化算法,通过典型实例表明所用方法的正确性和有效性。  相似文献   

16.
A shape or topology design with the stiffness maximized and the maximum stress minimized is usually of practical significance in structural optimization. This paper proposes a thickness based evolutionary procedure for such multicriteria design problems. To make the multicriteria optimization suit to more realistic structural situations, multiple maximum stress locations and multiple load cases are taken into account in this paper. To balance the stiffness and stress criteria, a weighting average scheme is adopted to identify the overall effects on the two components of design objective due to varying an element's thickness. Adopting the proposed optimization procedure, a design with maximized static stiffness and minimized peak stress is achieved by gradually shifting material from the under‐utilized regions onto the over‐utilized ones. The examples show the capabilities of the proposed method for solving multicriteria size and topology designs for both single and multiple load cases. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
A new nonprobabilistic reliability-based topology optimization method for continuum structures with displacement constraints is proposed in this paper, in which the optimal layout consists of solid material and truss-like microstructure material simultaneously. The unknown-but-bounded uncertainties that exist in material properties, external loads, and safety displacements are considered. By utilizing the representative volume element analysis, rules of macro-micro stiffness performance equivalence can be confirmed. A solid material and truss-like microstructure material structure integrated design interpolation model is firstly constructed, in which design domain elements can be conducted to select solid material or truss-like microstructure material by a combination of the finite element method in the topology optimization process. Moreover, a new nonprobabilistic reliability measuring index, namely, the optimization feature distance is defined by making use of the area-ratio ideas. Furthermore, the adjoint vector method is employed to obtain the sensitivity information between the reliability measure and design variables. By utilizing the method of moving asymptotes, the investigated optimization problem can be iteratively solved. The effectiveness of the developed methodology is eventually demonstrated by two examples.  相似文献   

18.
This work is directed toward optimizing concept designs of structures featuring inelastic material behaviours by using topology optimization. In the proposed framework, alternative structural designs are described with the aid of spatial distributions of volume fraction design variables throughout a prescribed design domain. Since two or more materials are permitted to simultaneously occupy local regions of the design domain, small-strain integration algorithms for general two-material mixtures of solids are developed for the Voigt (isostrain) and Reuss (isostress) assumptions, and hybrid combinations thereof. Structural topology optimization problems involving non-linear material behaviours are formulated and algorithms for incremental topology design sensitivity analysis (DSA) of energy type functionals are presented. The consistency between the structural topology design formulation and the developed sensitivity analysis algorithms is established on three small structural topology problems separately involving linear elastic materials, elastoplastic materials, and viscoelastic materials. The good performance of the proposed framework is demonstrated by solving two topology optimization problems to maximize the limit strength of elastoplastic structures. It is demonstrated through the second example that structures optimized for maximal strength can be significantly different than those optimized for minimal elastic compliance. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
This paper will propose a more effective and efficient topology optimization method based on isogeometric analysis, termed as isogeometric topology optimization (ITO), for continuum structures using an enhanced density distribution function (DDF). The construction of the DDF involves two steps. (1)  Smoothness: the Shepard function is firstly utilized to improve the overall smoothness of nodal densities. Each nodal density is assigned to a control point of the geometry. (2) Continuity: the high-order NURBS basis functions are linearly combined with the smoothed nodal densities to construct the DDF for the design domain. The nonnegativity, partition of unity, and restricted bounds [0, 1] of both the Shepard function and NURBS basis functions can guarantee the physical meaning of material densities in the design. A topology optimization formulation to minimize the structural mean compliance is developed based on the DDF and isogeometric analysis to solve structural responses. An integration of the geometry parameterization and numerical analysis can offer the unique benefits for the optimization. Several 2D and 3D numerical examples are performed to demonstrate the effectiveness and efficiency of the proposed ITO method, and the optimized 3D designs are prototyped using the Selective Laser Sintering technique.  相似文献   

20.

In areas that require high performance components, such as the automotive, aeronautics and aerospace industries, optimization of the dynamic behavior of structures is sought through different approaches, such as the design of materials specific to the application, for instance through structural topology optimization. The bi-directional evolutionary structural optimization (BESO) method, in particular, has been used for the simultaneous design of hierarchical structures, which means that the structural domain consists not only of the macrostructure but also of the microstructural topology of the materials employed. The purpose of this work is to apply the BESO method to solve two-dimensional multiscale problems in order to minimize the response of structures subjected to forced vibrations in a given frequency range. The homogenization method is applied to integrate the different scales of the problem. In particular, the material interpolation model for two materials is used. The BESO method is applied to different cases of optimization, in macroscale, microscale, and multiscale structural domains. Numerical examples are presented to validate the optimization and demonstrate the potential of this approach. The numerical examples show that the multiscale bi-material topology optimization method implemented here is able to produce structures and microstructures for optimization of the frequency domain response, satisfying prescribed volume constraints.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号