首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
La Serena cheeses, made from Merino ewes’ raw milk, were high-pressure (HP)-treated at 300 or 400 MPa for 10 min at 10 °C, on days 2 or 50 of ripening. Cheeses treated by HP on day 2 showed higher pH values than control cheese on day 3, but cheeses treated by HP on days 2 or 50 and control cheese had similar pH values on day 60. Breakdown of caseins was delayed by HP treatment of cheeses on day 2. Cheeses treated by HP on day 2 showed higher levels of hydrophilic peptides, lower levels of hydrophobic peptides, lower hydrophobic peptides: hydrophilic peptides ratios, and higher total contents of free amino acids than those of control cheese. HP treatment of cheese on day 50 scarcely affected proteolysis of 60-day-old cheeses. Fracturability, hardness and elasticity values of cheeses treated by HP on day 2 were higher than those of control cheese and of cheeses treated on day 50. Cheeses treated at 400 MPa on day 2 received the lowest scores for quality of taste from panellists, whereas the rest of HP-treated cheeses did not differ from control cheese.  相似文献   

2.
用体细胞数(SCC)分别是5.6×104,48.8×104,476.1×104 mL-1的原料乳制作契达干酪,得到LSCC,MSCC,HSCC组干酪。从干酪真正产出量来看:LSCC组>MSCC组>HSCC组(P<0.05)。在干酪成熟过程中,质构与SCC在P<0.01的水平下负相关,其中硬度、剪切力相关系数分别为0.5482和1.3977。感官评定结果表明,HSCC组干酪有酸味,且组织状态软而粘。同时对干酪成熟过程中的水溶性氮和脂解进行了测定,其结果是:WSN/TN与SCC在P<0.01水平下线性相关,相关系数为0.4261;HSCC组干酪的FFA在P<0.05的水平下显著高于LSCC和MSCC组干酪,且FFA与SCC在P<0.0001的水平下正相关。  相似文献   

3.
Kashar cheeses were manufactured from pure ovine (OV), bovine (BV) and caprine (CP) milk, and the chemical composition, cheese yield, proteolysis, hardness, meltability and volatile composition were studied during 90 days. Gross chemical composition, cheese yield and level of proteolysis were higher in OV cheeses than those of BV or CP cheeses. Glu, Val, Leu, Phe and Lys were the most abundant free amino acids (FAA) in the samples, and the concentrations of individual FAA were at the highest levels in OV cheeses with following BV and CP cheeses. Urea‐PAGE patterns and RP‐HPLC peptide profiles of the BV cheeses were completely different from the small ruminants’ milk cheeses (OV or CP). Higher and lower hardness and meltability values were observed in CP cheeses, respectively. OV cheeses resulted in higher levels of the major volatile compounds. In conclusion, the Kashar cheese made using OV milk can be recommended due to high meltability, proteolysis and volatiles.  相似文献   

4.
The objective of this research was to compare the effect of 2 fungal proteases, one that is already commercially established as a milk-clotting agent and another produced at the laboratory scale, on Prato cheese composition, protein and fat recovery, yield, and sensory characteristics. Cheeses were produced according to the traditional protocol, using protease from the fungus Thermomucor indicae-seudaticae N31 and commercial coagulant from Rhizomucor spp. as clotting agents. A 2 × 6 factorial design with 3 replications was performed: 2 levels of coagulants and 6 levels of storage time. After 5, 12, 19, 33, 43, and 53 d of refrigerated storage (12°C), cheeses were monitored for proteolysis, firmness, and casein degradation by capillary electrophoresis. Sensory acceptance was evaluated after 29 d of manufacturing. The different coagulants did not statistically affect Prato cheese composition, protein and fat recovery, and yield. Both cheeses presented good sensory acceptance. Proteolysis increased and firmness decreased for both cheeses during the storage time, as expected for Prato cheese. Caseins were well separated by capillary electrophoresis and the results showed, with good resolution, that the cheeses exhibited similar protein hydrolysis profile. Both cheeses presented good sensory acceptance. The gathered data showed that the protease from T. indicae-seudaticae N31 presented similar action compared with the commercial enzyme, indicating its efficiency as clotting agent for Prato cheese manufacture.  相似文献   

5.
The aim of this study was to evaluate the milk properties and the yield and sensory properties of Cantal cheese made with milk from Holstein or Montbéliarde cows milked once or twice daily. Sixty-four grazing cows [32 Holstein (H) and 32 Montbéliarde (M) cows] in the declining phase of lactation (157 d in milk) were allocated to 1 of 2 equivalent groups milked once daily (ODM) or twice daily (TDM) for 7 wk. The full-fat raw milk collected during 24 h from the 4 groups of cows (M-TDM, M-ODM, H-TDM, and H-ODM) was pooled and processed into Cantal cheese 4 times during the last 4 wk of the experimental period. In all, 16 cheeses were made (2 milking frequencies × 2 breeds × 4 replicates) and analyzed after a ripening period of 15 and 28 wk. The results showed that for both breeds, the pooled milk content of fat, whey protein, casein, total protein, and phosphorus as well as rennet clotting time and curd firming time were significantly higher with ODM cows, whereas the casein-to-total protein ratio was lower, and lactose, urea, calcium, and free fatty acids contents of milk remained unchanged. The acidification and draining kinetics of the cheese as well as cheese yields and the chemical and rheological properties of the ripened cheese were not significantly modified by milking frequency. For both breeds, the cheeses derived from ODM cows had a slightly yellower coloration but the other sensory attributes, except for pepper odor, were not significantly affected by milking frequency, thereby demonstrating that ODM does not have an adverse effect on the sensory properties of Cantal cheese. Compared with that of Holstein cows, milk from Montbéliarde cows resulted in a higher cheese yield (+1.250 kg/100 kg of milk) and ripened cheeses with lower pH, dry matter, calcium, sodium chloride, and water-soluble nitrogen concentrations. These cheeses had also a less firm and more elastic texture, a more acidic taste, and a yogurt/whey aroma.  相似文献   

6.
In this paper, we describe the effect of the addition of pregastric lipase on the composition and sensory properties of Idiazabal cheese. Free fatty acids (FFA), partial glycerides, free amino acids (FAA), gross composition and sensory characteristics were determined at different ripening times in cheeses manufactured with three different amounts of commercial animal lipase or with lipase-containing artisanal lamb rennet paste. The addition of lipase increased the content of total FFA, particularly of short-chain FFA, and that of total partial glycerides in cheeses. Unexpectedly, lipase utilization significantly affected total FAA concentration, which decreased in cheeses elaborated with high lipase amount. In general, Val, Glu and Leu were the major FAA, and their concentrations depended, mainly, on ripening time. Lipase addition had significant influence on the sensory characteristics of the cheeses, increasing scores for most of the flavour and odour attributes of the cheese. Principal component analysis (PCA) was done including dry matter, FFA, FAA, partial glycerides and odour and flavour attributes of the cheeses. It indicated that aroma and flavour parameters of Idiazabal cheese and the content of short-chain FFA and diglycerides were highly correlated to first principal component (PC1), while texture parameters, compositional variables and FAA were correlated to the second principal component (PC2).  相似文献   

7.
《International Dairy Journal》2007,17(9):1139-1147
A total of nine Protected Designation of Origin hard and semi-hard cheese varieties were selected for this study, all made with raw ewes’ milk. The cheeses selected were Idiazabal and Roncal from Spain, Ossau-Iraty from France, and Pecorino Sardo, Pecorino Romano and Fiore Sardo from Italy. This ring trial was designed as a first step to validate a consensually designed standardized guide for ewes’ milk hard and semi-hard cheese texture evaluation and assess main differences among five sensory panels using this guide. Several univariate and multivariate statistical techniques were employed for data treatment. Each of the sensory attributes was relevant and understood similarly by all the panelists. The sensory attributes more relevant to the discrimination of the cheeses were friability, adhesiveness, solubility and moisture in mouth. The development of standardized and consensual sensory tools has been proven to provide consistent results among the participating panels.  相似文献   

8.
High-pressure homogenization (HPH) of milk was studied as an alternative processing operation in the manufacturing of queso fresco cheese. Raw and pasteurized (65°C for 30 min) milks were subjected to HPH at 0, 100, 200, and 300 MPa and then used to manufacture queso fresco. The cheeses were evaluated for yield, moisture content, titratable acidity, nitrogen content, whey protein content, yield force, yield strain, and tactile texture by instrumental or trained panel analyses. The combination of HPH and thermal processing of milk resulted in cheeses with increased yield and moisture content. The net amount of protein transferred to the cheese per kilogram of milk remained constant for all treatments except raw milk processed at 300 MPa. The highest cheese yield, moisture content, and crumbliness were obtained for thermally processed milk subjected to HPH at 300 MPa. The principal component analysis of all measured variables showed that the variables yield, moisture content, and crumbliness were strongly correlated to each other and negatively correlated to the variables yield strain, protein content (wet basis), and sensory cohesiveness. It is suggested that the combination of thermal processing and HPH promotes thermally induced denaturation of whey protein, together with homogenization-induced dissociation of casein micelles. The combined effect results in queso fresco containing a thin casein-whey matrix that is able to better retain sweet whey. These results indicate that HPH has a strong potential for the manufacture of queso fresco with excellent yield and textural properties.  相似文献   

9.
10.
Fortification of cheesemilk with membrane retentates is often practiced by cheesemakers to increase yield. However, the higher casein (CN) content can alter coagulation characteristics, which may affect cheese yield and quality. The objective of this study was to evaluate the effect of using ultrafiltration (UF) retentates that were processed at low temperatures on the properties of Swiss cheese. Because of the faster clotting observed with fortified milks, we also investigated the effects of altering the coagulation conditions by reducing the renneting temperature (from 32.2 to 28.3°C) and allowing a longer renneting time before cutting (i.e., giving an extra 5 min). Milks with elevated total solids (TS; ∼13.4%) were made by blending whole milk retentates (26.5% TS, 7.7% CN, 11.5% fat) obtained by cold (<7°C) UF with part skim milk (11.4% TS, 2.5% CN, 2.6% fat) to obtain milk with CN:fat ratio of approximately 0.87. Control cheeses were made from part-skim milk (11.5% TS, 2.5% CN, 2.8% fat). Three types of UF fortified cheeses were manufactured by altering the renneting temperature and renneting time: high renneting temperature = 32.2°C (UFHT), low renneting temperature = 28.3°C (UFLT), and a low renneting temperature (28.3°C) plus longer cutting time (+5 min compared to UFLT; UFLTL). Cutting times, as selected by a Wisconsin licensed cheesemaker, were approximately 21, 31, 35, and 32 min for UFHT, UFLT, UFLTL, and control milks, respectively. Storage moduli of gels at cutting were lower for the UFHT and UFLT samples compared with UFLTL or control. Yield stress values of gels from the UF-fortified milks were higher than those of control milks, and decreasing the renneting temperature reduced the yield stress values. Increasing the cutting time for the gels made from the UF-fortified milks resulted in an increase in yield stress values. Yield strain values were significantly lower in gels made from control or UFLTL milks compared with gels made from UFHT or UFLT milks. Cheese composition did not differ except for fat content, which was lower in the control compared with the UF-fortified cheeses. No residual lactose or galactose remained in the cheeses after 2 mo of ripening. Fat recoveries were similar in control, UFHT, and UFLTL but lower in UFLT cheeses. Significantly higher N recoveries were obtained in the UF-fortified cheeses compared with control cheese. Because of higher fat and CN contents, cheese yield was significantly higher in UF-fortified cheeses (∼11.0 to 11.2%) compared with control cheese (∼8.5%). A significant reduction was observed in volume of whey produced from cheese made from UF-fortified milk and in these wheys, the protein was a higher proportion of the solids. During ripening, the pH values and 12% trichloroacetic acid-soluble N levels were similar for all cheeses. No differences were observed in the sensory properties of the cheeses. The use of UF retentates improved cheese yield with no significant effect on ripening or sensory quality. The faster coagulation and gel firming can be decreased by altering the renneting conditions.  相似文献   

11.
The aim of the present study was to evaluate some physicochemical, microbiological and sensory properties of fresh and matured (75 days) soft cheeses made with mixtures of cow milk and 0, 25, 50 and 75 mL/100 mL of lupin milk. A remarkable increase in cheese yield was observed with increasing the level of lupin milk to the mixture. Compared to cow milk cheese, the protein content was significantly (P ≤ 0.05) increased while ash was decreased with the increase in the level of lupin milk for both fresh and matured cheese. However, fat content, total solids and acidity were increased only for fresh cheese and decreased for mature one compared to that of cow milk. The pH showed significant (P ≤ 0.05) reduction when the levels of lupin milk increased for fresh cheese while for matured cheese it slightly decreased. The total bacterial count is within the range that naturally exists in milk containing foods. The others microorganisms such as fungi, mold, Escherichia coli, and Salmonella were not existed in both types of cheese. Regardless of cheese color, incorporation of lupin milk at low concentration (25 mL/100 mL) significantly (P ≤ 0.05) enhanced the taste, texture, flavor, and overall acceptability of both fresh and mature cheese.  相似文献   

12.
成熟温度对Mozzarella干酪蛋白水解和质构的影响   总被引:1,自引:0,他引:1  
研究了温度为4,7,10℃时对干酪成熟过程中蛋白水解和质地的影响。结果表明,随着干酪成熟温度的升高,成熟期间干酪中可溶性氮与总氮的比值增加较快,干酪的硬度下降速度也较快。说明在较高的成熟温度下,干酪在较短的时间内能够达到成熟的状态。  相似文献   

13.
This study aimed to assess and compare the nutritional, technological, and sensory characteristics of Minas fresh cheese made with goat milk, cow milk, or a mixture of the two stored in cold conditions for 21 d. The yield and centesimal composition of the cheeses were not affected by the type of milk used in their preparation. Reductions were observed in the moisture content, pH, proteolysis index, and instrumental hardness; moreover, increases were observed in the syneresis, acidity index, and depth of proteolysis index in all cheeses. The percentages of caprylic, capric, oleic, and linoleic fatty acids were higher in goat milk cheese and cheese made with a mixture of goat and cow milk compared with cow milk cheese, and a sensory evaluation revealed differences in color, flavor, and aroma between the cheeses. The preparation of Minas fresh cheese with a mixture of goat and cow milk can be a viable alternative for dairy products in the market that can be characterized as high-quality products that meet consumer demands.  相似文献   

14.
BACKGROUND: Oscypek is a special type of Polish smoked ewe cheese with a unique flavour described as slightly sour, piquant, salted and smoked. In this study the volatile, sensory and microbial profiles of Oscypek cheese were analysed during its various preparation stages of curding, scalding, brining and smoking. RESULTS: The smoked ewe cheese was characterised by 54 volatile compounds belonging to nine different chemical groups (free fatty acids, esters, ketones, alcohols, aldehydes, furans/furanones, phenols, sulfur compounds, terpenes). The sensory aroma profile analysis of unsmoked and smoked cheese showed an important correlation with the analysis of volatile compounds. The microbial profile data indicated that in smoked cheese such as Oscypek the levels of selected bacteria diminished after the curding stage as a result of the subsequent scalding, brining and smoking stages. CONCLUSION: From the results it can be concluded that, although the analysed smoked cheese consisted of three groups of compounds, the first derived from biochemical reactions (free fatty acids, esters, ketones, alcohols, aldehydes, sulfur compounds), the second from smoking (furans and furanones, phenols) and the third from milk flavour (terpenes), it is the smoking process that mainly influences its typical flavour. Copyright © 2011 Society of Chemical Industry  相似文献   

15.
Ewe milk cheeses were submitted to 200, 300, 400, and 500 MPa (2P to 5P) at 2 stages of ripening (after 1 and 15 d of manufacturing; P1 and P15). The high-pressure-treated cheeses showed a more important hydrolysis of β-casein than control and 2P1 cheeses. Degradation of αs1-casein was more important in 3P1, 4P1, and P15 cheeses than control and 2P1 cheeses. The 5P1 cheeses exhibited the lowest degradation of αs-caseins, probably as a consequence of the inactivation of residual chymosin. Treatment at 300 MPa applied on the first day of ripening increased the peptidolytic activity, accelerating the secondary proteolysis of cheeses. The 3P1 cheeses had extensive peptide degradation and the highest content of free amino acids. Treatments at 500 MPa, however, decelerated the proteolysis of cheeses due to a reduction of microbial population and inactivation of enzymes.  相似文献   

16.
采用3×3拉丁方试验设计,3个奶酪槽中原料乳的蛋白质与脂肪质量比分别为1∶1,1.2∶1,1.3∶1(通过添加脱脂干奶粉调整蛋白质含量)。研究蛋白质与脂肪比例对Mozzarella干酪的品质的影响。结果表明,随着原料乳中蛋白质脂肪比例的增加,干酪的含水量、油脂析出性显著降低(P<0.05),干酪的弹性显著升高(P<0.05),蛋白质与脂肪比例对Mozzarella干酪的蛋白质水解没有显著的影响。  相似文献   

17.
The objective of this study was to describe the proteolysis and lipolysis profiles in goat cheese made in the Canary Islands (Spain) using raw milk with 3 different fat contents (0.5, 1.5, and 5%) and ripened for 1, 7, 14, and 28 d. β-Casein was the most abundant protein in all cheeses and at all ripening times. Quantitative analysis showed a general decrease in caseins as ripening progressed, and degradation rates were higher for αS1-casein than for β-casein and αS2-casein. Furthermore, the degradation rate during the experimental time decreased with lower fat contents. The αS2-casein and αS1-casein levels that remained in full-fat and reduced-fat cheeses were less than those in low-fat cheese. In contrast, β-casein also showed degradation along with ripening, but differences in degradation among the 3 cheese types were not significant at 28 d. The degradation products increased with the ripening time in all cheeses, but they were higher in full-fat cheese than in reduced-fat and low-fat cheeses. The free fatty acid concentration per 100 g of cheese was higher in full-fat cheese than in reduced- and low-fat cheese; however, when the results were expressed as milligrams of free fatty acids per gram of fat in cheese, then lipolysis occurred more rapidly in low-fat cheese than in reduced- and full-fat cheeses. These results may explain the atypical texture and off-flavors found in low-fat goat cheeses, likely the main causes of non-acceptance.  相似文献   

18.
Full fat, milled-curd Cheddar cheeses (2 kg) were manufactured with 0.0 (control), 0.1, 1.0, or 10.0 μmol of pepstatin (a potent competitive inhibitor of chymosin) added per liter of curds/whey mixture at the start of cooking to obtain residual chymosin levels that were 100, 89, 55, and 16% of the activity in the control cheese, respectively. The cheeses were ripened at 8°C for 180 d. There were no significant differences in the pH values of the cheeses; however, the moisture content of the cheeses decreased with increasing level of pepstatin addition. The levels of pH 4.6-soluble nitrogen in the 3 cheeses with added pepstatin were significantly lower than that of the control cheese at 1 d and throughout ripening. Densitometric analysis of urea-PAGE electro-phoretograms of the pH 4.6-insoluble fractions of the cheese made with 10.0 μmol/L of pepstatin showed complete inhibition of hydrolysis of αS1-casein (CN) at Phe23-Phe24 at all stages of ripening. The level of insoluble calcium in each of 4 cheeses decreased significantly during the first 21 d of ripening, irrespective of the level of pepstatin addition. Concurrently, there was a significant reduction in hardness in each of the 4 cheeses during the first 21 d of ripening. The softening of texture was more highly correlated with the level of insoluble calcium than with the level of intact αS1-CN in each of the 4 cheeses early in ripening. It is concluded that hydrolysis of αS1-CN at Phe23-Phe24 is not a prerequisite for softening of Cheddar cheese during the early stages of ripening. We propose that this softening of texture is principally due to the partial solubilization of colloidal calcium phosphate associated with the para-CN matrix of the curd.  相似文献   

19.
A capillary electrophoresis method has been applied to the detection of illegal addition of milk from goat and/ or cow in Halloumi cheese, traditionally made with sheep milk. The electrophoretic profiles of the casein from Halloumi cheeses have revealed that caprine para-kappa-casein and bovine alphas1-casein peaks point to the presence of low percentages of goat's and/or cow's milk added to Halloumi cheese. Stepwise multiple linear regression has been used to predict these percentages with a standard error of the estimation of 2.14%. The analytical method combined with the statistical application is valid for the prediction of percentages higher than 2% of goat's and percentages of 5% of cow's milk added to the cheese either in fresh or ripened cheese. The standard error of estimation was higher for the prediction of cow's milk than for goat's milk.  相似文献   

20.
The effect of adding either skim milk or a commercial dry milk protein concentrate (MPC) to whole milk on the composition, yield, and functional properties of Mexican Oaxaca cheese were investigated. Five batches of Oaxaca cheeses were produced. One batch (the control) was produced from whole milk containing 3.5% fat and 9% nonfat solids (SNF). Two batches were produced from milk standardized with skim milk to 2.7 and 1.8% fat, maintaining the SNF content at 9%. In the other 2 batches, an MPC (40% protein content) was used to standardize the milk to a SNF content of 10 and 11%, maintaining the milk fat content at 3.5%. The use of either skim milk or MPC caused a significant decrease in the fat percentage in cheese. The use of skim milk or MPC showed a nonsignificant tendency to lower total solids and fat recoveries in cheese. Actual, dry matter, and moisture-adjusted cheese yields significantly decreased with skim milk addition, but increased with MPC addition. However, normalized yields adjusted to milk fat and protein reference levels did not show significant differences between treatments. Considering skim milk-added and control cheeses, actual yield increased with cheese milk fat content at a rate of 1.34 kg/kg of fat (R = 0.88). In addition, cheese milk fat and SNF:fat ratio proved to be strong individual predictors of cheese moisture-adjusted yield (r2 ≈ 0.90). Taking into account the results obtained from control and MPC-added cheeses, a 2.0-kg cheese yield increase rate per kg of milk MPC protein was observed (R = 0.89), with TS and SNF being the strongest predictors for moisture adjusted yield (r2 ≈ 0.77). Reduced-fat Oaxaca cheese functionality differed from that of controls. In unmelted reduced-fat cheeses, hardness and springiness increased. In melted reduced-fat cheeses, meltability and free oil increased, but stretchability decreased. These changes were related to differences in cheese composition, mainly fat in dry matter and calcium in SNF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号