首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to piezoceramics, orthotropic piezoelectric fibre composites (OPFC) which can be used as actuator/sensor elements in damage detection show clear advantages because of their high sensitivity along the fibre direction and directivity. The focusing acoustic field distribution of the OPFC phased array transducer is analyzed by the finite element method together with directivity analysis in metallic materials. The optimal array parameters such as spacing, width and number of elements are obtained by studying the total displacement changes as various parameters change at the focus point. The feasibility of an OPFC ultrasonic phased array transducer for damage detection is validated.  相似文献   

2.
周明  邵富群  张林 《计量学报》2014,35(2):147-150
以水、泥沙构成的液固两相流为研究对象,制作了压电超声传感器、传感器阵列及超声波收发电路,构成了两相流断面超声投影数据采集系统,实现了计算机高速数据采集。实验验证,设计的压电传感器谐振频率达到200 kHz,发射角度大,接收灵敏度高;采用RC滤波方法,能够有效地滤除接收传感器受到的工频电磁干扰信号;收发传感器交替排列的传感阵列既可以获得最大数量的投影数据,又可以使强弱电电路分离,免受互扰;采集的投影数据能够反映固相流动状况。  相似文献   

3.
ABSTRACT

In order to verify the feasibility and effectiveness of the sensor used in complex concrete materials, an innovative application of ultrasonic phased array detection for a concrete structure was investigated. Comparing with the traditional piezoelectric composites, orthotropic piezoelectric composite material (OPCM) can be used as transducers in damage detection show clear advantages because of their high sensitivity and directivity along the polarization direction. A low frequency ultrasonic phased array transducer consisting of 16 OPCM elements is studied. The optimal array parameters, such as the phased array element interval, the array element width, and number of elements, are obtained by studying the total displacement changes as various parameters change at the focus point in the concrete structure. This configuration allowed the variation and control of the wave field directivity in the concrete structure during the measurements. The measurements were taken on concrete specimens using a precise time-delay device. The experimental measurements were compared to theoretical calculations to investigate the influence of different array element parameters. The results show that an OPCM phased array transducer can be used to detect damage in a concrete block.  相似文献   

4.
Partial discharge (PD) location in transformers is very important, and many methods that have been brought forward in past decades have a limitation theoretically, namely, they cannot locate multiple PDs in electrical equipment. In this paper, a new PD location method based on UHF and ultrasonic-phased arrays receiving theory has been presented, which has a possibility to locate multiple PDs. According to the method, a phased-ultrasonic receiving-planar array sensor that possesses 16 * 16 elements is designed; and, based on the phased-array theory, the characteristics of the plane sensor are studied. The laboratory experimental tests on the plane sensor element indicates that it has a good performance within the frequency band of the main ultrasonic energy produced by PD in transformer oil. Location tests are conducted on one or two piezoelectric ultrasonic sources in oil, which are both simulated as PD sources and triggered by an electrical pulse whose front is considered as a time benchmark in the locating algorithm. The test results show locations to one and two PDs can be realized in a single measurement, which lays a foundation for locating PDs in a power transformer in service.  相似文献   

5.
In this paper the theoretical analysis and the results of testing of a piezoelectric cantilever for the investigation of material surfaces are presented. The cantilever consists of a thin piezoelectric plate bonded with a thin metal (e.g., molybdenum) foil. The analytical formulae for spring constants and sensitivity of such monomorph have been established. The performed analysis permits us to state the optimal parameters of the sensor dimensions and the Young's modulus of applied materials. An important factor is the position of the nodal plane and its influence on sensor sensitivity. Various combinations of ceramic plates and metal foils were theoretically analyzed, then applied in practical realizations of the sensors. The sensor with a tip was applied to a contact ultrasonic microscope, and replaced the optical sensor commonly used to measure the deflection amplitude of the tip during scanning the surfaces of the sample. Such a method enables us to create the three-dimensional images of the surface. The sensors produced were calibrated using the quasi-static method. Sensors of this kind may fulfil requirements necessary in investigating surface properties of materials applied in modern electronics and technology.  相似文献   

6.
Continuous monitoring of an arterial pulse using a pressure sensor attached on the epidermis is an important technology for detecting the early onset of cardiovascular disease and assessing personal health status. Conventional pulse sensors have the capability of detecting human biosignals, but have significant drawbacks of power consumption issues that limit sustainable operation of wearable medical devices. Here, a self‐powered piezoelectric pulse sensor is demonstrated to enable in vivo measurement of radial/carotid pulse signals in near‐surface arteries. The inorganic piezoelectric sensor on an ultrathin plastic achieves conformal contact with the complex texture of the rugged skin, which allows to respond to the tiny pulse changes arising on the surface of epidermis. Experimental studies provide characteristics of the sensor with a sensitivity (≈0.018 kPa?1), response time (≈60 ms), and good mechanical stability. Wireless transmission of detected arterial pressure signals to a smart phone demonstrates the possibility of self‐powered and real‐time pulse monitoring system.  相似文献   

7.
A wireless pressure sensor is described for use in a high-pressure manufacturing process with three major subsystems: energy conversion by a stack of piezoelectric disks, energy measurement and control by a threshold modulator, and ultrasonic signal transmission by a piezoelectric transmitter. The second system, the threshold modulator, is the focus of this paper. The charge, proportional to pressure, on a capacitive element is measured and controlled through the use of a two-transistor modulator. Standard NPN and PNP transistors are used to passively control the flow of charge between a piezoelectric stack and an ultrasonic transmitter. The basis for the design is discussed, from which a simulation is developed and compared to a bench top prototype. The results of this comparison indicate the appropriateness of the assumptions used to produce an analytical model of the design and the limiting conditions under which the modulator will effectively measure charge. Finally, the prototype device is optimized with respect to sensitivity, gain, and operating range for use in real-time process monitoring and control.  相似文献   

8.
《IEEE sensors journal》2006,6(5):1134-1143
This paper is devoted to the development of high temperature,$gamma$, and neutron radiation resistant ultrasonic sensors that must operate continuously in a liquid Pb/Bi alloy up to a temperature of 450$^circhboxC$. The main problems are acoustic coupling of a piezoelectric element to a protector and wetting of the sensor by a heavy liquid metal. The piezoelement was attached to the sensor body by a gold to gold diffusion bonding process, monitored ultrasonically. Long-lasting wetting of the active surface of the sensors was achieved by coating the front face with a protective diamond-like carbon (DLC) layer. Due to the high radiation, only a limited number of materials could be used in the sensor design. The best performance was obtained using bismuth titanate piezoelectric elements, which showed no noticeable changes of pulse responses and transfer coefficients during irradiation and high-temperature tests. The housing of the sensors is made of stainless steel AISI 316 and is laser welded, and a high-temperature$varnothing$1-mm 15-m-long mineral cable is used. The ultrasonic velocity in the liquid Pb/Bi in the temperature range 160$^circhboxC$–460$^circhboxC$was measured using developed sensors, and the signal losses at various distances up to 0.8 m were evaluated.  相似文献   

9.
A small aperture wideband ultrasonic optical fiber hydrophone is described. The transduction mechanism is based on the detection of acoustically induced changes in the optical thickness of a 25-mum thick parylene polymer film acting as a low finesse Fabry Perot (FP) interferometer that is deposited directly onto the end of a single mode optical fiber. The acoustic performance compares favorably with that of PVDF needle and membrane hydrophones with a peak noise-equivalent-pressure (without signal averaging) of 10 kPa over a 25-MHz measurement bandwidth, a wideband response to 20 MHz, and a near omnidirectional performance at 10 MHz. The dynamic range was 60 dB with an upper limit of linear detection of 11 MPa and a temporal stability of <5% over a period of 20 h. The hydrophone can also measure temperature changes with a resolution of 0.065 degrees C, offering the prospect of making simultaneous acoustic pressure and temperature measurements. The transduction parameters of the FP sensing element were measured, yielding an ultrasonic acoustic phase sensitivity of 0.075 rad/MPa and a temperature phase sensitivity of 0.077 rad/ degrees C. The ability to achieve high acoustic sensitivity with small element sizes and to repeatably fabricate rugged sensor downleads using polymer deposition techniques suggests that this type of hydrophone can provide a practical alternative to piezoelectric hydrophone technology.  相似文献   

10.
基于钨钢探针和PVDF压电薄膜材料,设计研制了一种用于聚焦超声测量的新型传感器.同时,通过理论分析和有限元分析软件建立了传感器物理模型,并对传感器的内部声场及反射状况进行了模拟仿真,获得传感器输出信号的波形和幅值.最后,利用研制的传感器对聚焦换能器焦域声压和声强进行检测,并将检测结果与理论仿真结果对比,在10 W的声功...  相似文献   

11.
Thermal energy storage (TES) systems are central elements of various types of power plants operated using renewable energy sources. Packed bed TES can be considered as a cost-effective solution in concentrated solar power plants. Such a device is made up of a tank filled with a granular bed through which a heat-transfer fluid circulates. However, in such devices, the tank might be subjected to an accumulation of thermal stresses during cycles of loading and unloading due to the differential dilatation between the filler and the tank walls. The evolution of tank wall stresses over thermal cycles, taking into account both thermal and mechanical loads, is studied here using a numerical model based on the discrete element method. Simulations were performed for two different thermal configurations: (i) the tank is heated homogeneously along its height or (ii) with a vertical gradient of temperature. Then, the stresses resulting from the two different loadings applied on the tank are compared as well the kinematic response of the internal granular material. The kinematics of the granular material are analyzed at the particles scale (i.e. discrete elements), with a focus on the effect of particle/particle and wall/particle friction. Results show that a faster rearrangement of the packing occur when a thermal gradient is moving along the tank, leading to higher values of stresses applied on the tank walls. In addition to this, the behavior of the packed bed is dependent on the friction levels in the tank, whether the friction between particles themselves or the friction at the contact of particles with the shell. The influence of the slenderness ratio of the tank is investigated as well. Moreover, a reduction of 20% of thermal applied stresses can be obtained when inclined wall boundaries are used. The combination of an homogeneous configuration with low levels of friction (using lubricants) in thermocline storage tanks with inclined fixed boundaries can decrease significantly the induced stresses applied on the wall.  相似文献   

12.
Transmission characteristics of a double-structured tank, used for high-frequency (1 MHz range) ultrasonic cleaning of semiconductor wafers and substrates, were improved by utilizing oblique incidence of ultrasonic waves. As the sound transmittivity through a plate in water varies with the angle of incidence, the bottom of the Pyrex glass inner container was slanted at the angle where strong transmission occurred. In the slant-bottom container, an intensive and uniform sound pressure distribution was measured with a polyvinylidene fluoride (PVDF) hydrophone probe. In comparison with the conventional horizontal-bottom container, it was shown that the distributions as well as amplitude of sound pressure were remarkably improved by slanting the bottom of the inner container at the proper angle  相似文献   

13.
网格对超声清洗槽内声场的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
用网篮盛放待清洗工件是最常用的一种清洗方法,影响清洗效果的一个关键因素是清洗槽内的声场分布,而网篮的存在会影响超声清洗槽内声场的分布。从实用的角度研究了清洗网篮对超声清洗槽内声场的影响。在用驻波场理论对清洗槽内声场分布情况进行分析之后.实验上用水听器法和染色法分别测量了放人网格前后超声清洗槽内声场的分布特点。结果表明,当丝径远小于1/4波长时,网格的存在对声场分布的影响很小,只是引起声波传播能量不同程度的衰减。这项研究对使用清洗网篮的超声清洗具有一定的参考价值。  相似文献   

14.
This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT)  相似文献   

15.
Ping Tan  Liyong Tong   《Composites Part B》2006,37(7-8):583-592
Delamination is one of the most prevalent failure mechanisms for laminated composites. To secure the safety of composite structures, it is required and necessary to develop cost-effective and efficient delamination detection techniques and methods. In this paper, a dynamic analytical model, namely sensor charge output deviation method is proposed to identify a delamination embedded in a cantilever laminated composite beam bonded with isolated piezoelectric actuator and sensor patches. Two pairs of collocated piezoelectric patches are bonded on top and bottom surfaces of the beam and used as actuators for exciting the composite beam. Another piezoelectric patch with gridding electrode pattern on its top surface is bonded on the top surface of the host beam and is employed as a sensor to record the required voltage and thus the sensor charge output along the beam. The effects of some major geometric parameters and the type of applied electric voltage on the sensor charge output distribution and delamination detection sensitivity are discussed in this paper. A comparison between the analytical models using isolated piezoelectric actuator and sensor patches and that using integrated piezoelectric sensor/actuator layer, which was developed previously, is conducted. For the baseline case considered here, there is an excellent agreement of the first three order frequencies between the present finite element analysis and analytical models.  相似文献   

16.
A numerical simulation model is presented to investigate the influences of design parameters of linear phased array transducers on beam focusing and steering performance. The characteristic of ultrasonic beam profiles has been simulated on the basis of the Huygen's superposition principle. For the simulation, a linear phased array is considered as the composition of finite number of elements separated by equidistance. Individual elements are considered as two-dimensional point sources. The waves generated from piezoelectric elements are considered as simplified transient ultrasonic waves that are constructed with the cosine function enveloped with a Hanning window. The characteristic of ultrasonic wave propagation into a medium from the phased array transducer is described. The effects of the number, the interelement spacing, steering angle, the focal length, and frequency bandwidth of the piezoelectric elements on beam directivity and ultrasonic pressure field in a linear phased array transducer are systematically discussed.  相似文献   

17.
Flexible piezoresistive pressure sensors have been attracting wide attention for applications in health monitoring and human‐machine interfaces because of their simple device structure and easy‐readout signals. For practical applications, flexible pressure sensors with both high sensitivity and wide linearity range are highly desirable. Herein, a simple and low‐cost method for the fabrication of a flexible piezoresistive pressure sensor with a hierarchical structure over large areas is presented. The piezoresistive pressure sensor consists of arrays of microscale papillae with nanoscale roughness produced by replicating the lotus leaf's surface and spray‐coating of graphene ink. Finite element analysis (FEA) shows that the hierarchical structure governs the deformation behavior and pressure distribution at the contact interface, leading to a quick and steady increase in contact area with loads. As a result, the piezoresistive pressure sensor demonstrates a high sensitivity of 1.2 kPa−1 and a wide linearity range from 0 to 25 kPa. The flexible pressure sensor is applied for sensitive monitoring of small vibrations, including wrist pulse and acoustic waves. Moreover, a piezoresistive pressure sensor array is fabricated for mapping the spatial distribution of pressure. These results highlight the potential applications of the flexible piezoresistive pressure sensor for health monitoring and electronic skin.  相似文献   

18.
目的 在传感器与熔体不接触的条件下获取注射成形过程中熔体流动固化收缩等准确信息。方法 基于超声传感技术,建立适用于塑料注塑成形过程的超声监测系统,通过超声探头采集型腔中某点的超声反射信号强度,结合压力传感器数据与有限元仿真结果对超声信号特征峰值进行分析,并在不同注塑压力、速度、冷却时间等工艺条件下进行多组实验。结果 超声信号特征峰值能够精确感知注射成形过程中熔体流动前沿到达、型腔充填完成、V/P转换、冷却收缩等型腔内实时信息。结论 与压力传感器等技术手段相比,通过超声技术可在与熔体不接触的条件下获取型腔内熔体演变的更多信息。  相似文献   

19.
This paper describes a tangential-axial eigen-mode of a piezoelectric hollow cylinder. A new type of piezoelectric ultrasonic motor using this oscillation mode has been developed. The motor is a traveling-wave-type motor. The stator of such a motor consists of a solid piezoelectric hollow cylinder, which, excited in the tangential-axial resonant mode by a three-phase electrical signal, will exhibit elliptical displacement and transfer rotation to the rotor. The behavior of the stator has been simulated with finite element method (FEM) software. The simulation results have been checked with single-point contact measurements on the surface of the ultrasonic motors. The paper closes with the introduction of new ultrasonic motors based on this oscillation mode.  相似文献   

20.
Sagnac-type fiber-optic array sensor for detection of bulk ultrasonic waves   总被引:4,自引:0,他引:4  
In this paper, we describe a fiber optic array sensor suitable for detection of bulk ultrasonic waves. This sensor is based on an intrinsic fiber optic Sagnac interferometer. The fiber array is formed by multiple folding of a continuous length of an optical fiber into flat coils. Depending on the orientation of the fiber array with respect to the ultrasonic wave, the proposed sensor can act as a conventional in-phase detector or as a narrowband detector. In the narrowband mode, the center frequency of detection can be tuned by adjusting the spacing of the fiber array elements to be equal to the ultrasonic wavelength of interest. This feature distinguishes this array sensor from conventional hydrophones in which a receiver is typically much smaller than the acoustical wavelength. It is shown that the array sensor provides an enhanced signal-to-noise ratio (SNR) compared with a single element detection scheme. Results are presented for detection of ultrasonic waves in water arising from both piezoelectric and laser ultrasonic sources. Potential areas of application of this sensor include process monitoring, smart structures, bio-medical ultrasound, and chemical sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号