首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Friction stir processing (FSP) is a unique approach being presently researched for composite fabrication. In the present investigation, Al-B4C surface composite was fabricated through FSP by incorporating B4C powder particles into Al–Mg–Zn–Cu alloy (AA 7075) matrix. The influence of varying powder particle reinforcement strategies on the microstructure, powder distribution, microhardness, and wear resistance of the surface composite is reported. In addition, AA 6061/B4C composites were prepared using the same parameter set and the powder distribution in the composite was compared to that in the AA 7075/B4C composite. More homogeneous dispersion of B4C powder was observed in AA 6061 as compared to AA 7075 substrate. Among the prepared AA 7075/B4C composites, the best B4C powder distribution was detected in samples processed using fine powder and incorporating the change in stirring direction between passes. The hardness and wear resistance of the prepared composites were almost doubled attributing to several strengthening mechanisms and B4C powder distribution in the AA 7075 matrix.  相似文献   

2.
In this study, friction stir processing (FSP) was utilized to incorporate SiC and MoS2 particles into the matrix of an A356 Al alloy to form surface hybrid composite. A constant tool rotation rate of 1600 rpm and travel speed of 50 mm/min with a tool tilt angle of 3° was used. The wear resistance of the processed samples improved significantly as compared to that of the as-cast alloy. Microstructural analyses showed a uniform distribution of reinforcement particles inside the nugget zone, and a MoS2 rich mechanically mixed layer (MML) on the top of worn surface. This MoS2 layer is considered to stifle plastic deformation and thus, to improve tribological properties of the alloy.  相似文献   

3.
Friction stir processing (FSP) has been used to produce metal matrix composites by incorporating reinforcement particles in an AA6061-T6 matrix. Two types of particles (Al2O3 and SiC) were tested. Powder was placed into a mechanized square section groove on a plate surface and then sealed before FSP. This study investigates the effect of several strategies for reinforcement (number and direction of FSP passes) on the wear resistance behavior of friction stir-processed Al-SiC/Al2O3 composites. The distribution and size of the particles in the friction stir-processed zone were studied by optical and scanning electron microscopy. Ball-on-disk test was performed on both base material and surface metal matrix composites (SMMCs), and both friction coefficient and specific wear rate (SWR) were correlated with particle distribution and metallurgical effects on the metallic matrix. For all strategies and for both types of reinforcing particles used in this study, the friction coefficient decreases with respect to the base material. Moreover, the SWR is reduced for the conditions of one single FSP pass and two passes with opposite directions, when SiC are used. However, this positive effect has not been detected with Al2O3. Wear mechanisms in base metal and in SMMCs are compared and discussed in detail.  相似文献   

4.
LM13 aluminium alloy (Al−Si12CulMg1) with titanium diboride (TiB2) and boron carbide (B4C) particulate hybrid composites have been prepared using stir casting process. Wt% of titanium diboride is varied from 0–10 and constant 5 wt% boron carbide particles have been used to reinforce LM13 aluminium alloy. Microstructure of the composites has been investigated and mechanical properties viz., hardness, the tensile strength of composites have been analyzed. Wear behavior of samples has been tested using a pin on disc apparatus under varying load (20 N–50 N) for a sliding distance of 2000 m. Fracture and wear on the surface of samples have been investigated. Microstructures of composites show uniform dispersion of particles in LM13 aluminium alloy. Hardness and tensile strength of composites increased with increasing wt % of reinforcements. Dry sliding wear test results reveal that weight loss of composites increased with increasing load and sliding distance. Fracture on the surface of composites reveals that the initiation of crack is at the interface of the matrix and reinforcement whereas dimples are observed for LM13 aluminium alloy. Worn surface of composites shows fine grooves and delamination is observed for the matrix.  相似文献   

5.
This paper emphasis the improvement of mechanical properties of AA7075-T651 using friction stir processing through localized surface modification by adding nano boron carbide particles. The reinforcement techniques such as the groove and blind hole methods were used by changing reinforcements of nano boron carbide and a matrix of AA7075-T651 surface composites volume percentages (2 %, 4 %, and 6 %) along with tool rotational speed and processing speeds. Optical microscopy, scanning electron microscope and x-ray diffraction analysis were used to examine the particle dispersion for the surface composites and to correlate with the enhanced mechanical properties. Results revealed that high input parameters have given grain coarsening and precipitate agglomeration and low input parameters provide poor nugget metal consolidation and no vertical material flow. The L9 orthogonal Array designed and optimized the process parameters for enhancing the surface properties of processed samples. Mechanical properties like ultimate tensile strength, yield strength, hardness, percentage of elongation and impact strength were evaluated for the groove friction stir processing method and blind-hole friction stir processing methods. From the results, it has been observed that the blind-hole technique resulted in higher hardness and the homogenous dispersion of nano boron carbide particles in the stir zone than the groove method. Consequently, for blind-hole friction stir processing, grey relational analysis (GRA) and particle swarm optimization (PSO) approaches were proposed to optimise process parameters. From the compared optimization results between grey relational analysis and particle swarm optimization, particle swarm optimization approach was shown the best optimization results. Successively, the optimum condition in the respective experimentation is accomplished. Based on these observation and results, final validation tests were carried by changing the volume percentages of reinforcement keeping tool rotation speed and tool processing speed as constant. It is apparent that dynamic recrystallization in aluminium alloy at the processed zone due to presence of heterogeneous nucleation sites with nano boron carbide particles.  相似文献   

6.
Dry sliding tribological characterization of redmud particle-reinforced Al6061/alumina/graphite hybrid metal matrix composite (RM-AlHMMC) was investigated as per ASTM G99-05 using pin on disc experimental setup. Initially, hybrid composites were fabricated through stir casting process by varying the wt.% of redmud particle as 3, 7, and 11, and then the wear tests were carried out based on L27 orthogonal array. The experimental results revealed that 11?wt.% RM-AlHMMC showed maximum of 90% improved wear resistance than AlHMMC. For all the composites, the coefficient of friction (CoF) increases and saturates with the applied load and sliding distance, in which 11?wt.% RM-AlHMMC showed maximum of 48% increased CoF than AlHMMC. Metallographic investigation of worn-out AlHMMC composite showed that at maximum applied load, sliding velocity, and sliding distance, the wear mechanism changes from abrasive to adhesive, but adding of redmud particle showed combined adhesive and abrasive wear mechanisms. The optimized tribological parameters were obtained using grey relational analysis which revealed that 11?wt.% RM-AlHMMC has improved tribological properties.  相似文献   

7.
Aluminum rich intermetallic particles are potential reinforcements for discontinuously reinforced aluminum matrix composites (DRAMCs). The objective of the present work is to produce AA6061/Al3Ti and AA6061/Al3Zr composites using in situ casting technique and applying friction stir processing (FSP) to enhance the distribution and morphology of Al3Ti and Al3Zr particles. AA6061/Al3Ti and AA6061/Al3Zr DRAMCs were produced by the in situ reaction of inorganic salts K2TiF6 and K2ZrF6 with molten aluminum. The microstructure was observed using optical and scanning electron microscopy. AA6061/Al3Ti DRAMC exhibited clusters of Al3Ti particles while the segregation of needle shape Al3Zr particles was observed in AA6061/Al3Zr DRAMC. The prepared composites were subjected to FSP. Significant changes in the distribution and morphology of Al3Ti and Al3Zr particles were observed after FSP. The changes in microhardness and sliding wear behavior of AA6061/Al3Ti and AA6061/Al3Zr DRAMCs before and after FSP is detailed in this paper.  相似文献   

8.
Aluminum metal matrix composites (AMMCs) explicitly show better physical and mechanical properties as compared to aluminum alloys and results in a more preferred material for a wide range of applications. The addition of reinforcements embargo AMMCs employment to industry requirements by increasing order of machining complexity. However, it can be machined with a high order of surface integrity by nonconventional approaches like abrasive water jet machining. Hybrid aluminum alloy composites were reinforced by B4C (5–15?vol%) and solid lubricant hBN (15?vol%) particles and fabricated using a liquid metallurgy route. This research article deals with the experimental investigation on the effect of process parameters such as mesh size, abrasive flow rate, water pressure and work traverse speed of abrasive water jet machining on hybrid AA6061-B4C-hBN composites. Water jet pressure and traverse speed have been proved to be the most significant parameters which influenced the responses like kerf taper angle and surface roughness. Increase in reinforcement particles affects both the kerf taper angle and surface roughness. SEM images of the machined surface show that cutting wear mechanism was largely operating in material removal.  相似文献   

9.
The tribological properties of carbon fiber reinforced polyimide (PI) composites with different MoS2 containing sliding against GCr15 steel were comparatively evaluated on an M-2000 model ring-on-block test rig. The wear mechanisms were also comparatively discussed, based on scanning electron microscopic examination of the worn surface of the PI composites and the transfer film formed on the counterpart. It was found that small incorporation of MoS2 was harmful to the improvement of friction and wear behaviors of carbon fiber reinforced PI composites. However, it was found that the increasing filler of MoS2 significantly improved the wear resistance and decreased the friction coefficient of carbon fiber reinforced PI composites. It was also found that the tribological properties of MoS2 and short carbon fiber reinforced PI composites were closely related with the sliding condition such as sliding rate and applied load.  相似文献   

10.
AA6061-T6 aluminium alloy (Al–Mg–Si alloy) has gathered wide acceptance in the fabrication of light weight structures requiring high strength-to-weight ratio and good corrosion resistance. The friction stir welding (FSW) process and tool parameters play major role in deciding the joint characteristics. In this research, the tensile strength and hardness along with the corrosion rate of friction-stir-butt welded joints of AA6061-T6 aluminium alloy were investigated. The relationships between the FSW parameters (rotational speed, welding speed, axial force, shoulder diameter, pin diameter and tool hardness) and the responses (tensile strength, hardness and corrosion rate) were established. The optimal welding conditions to maximize the tensile strength and minimize the corrosion rate were identified and reported here.  相似文献   

11.
Particle effects on friction and wear of aluminium matrix composites   总被引:1,自引:0,他引:1  
Particle effects on friction and wear of 6061 aluminium (6061 Al) reinforced with silicon carbide (SiC) and alumina (Al2O3) particles were investigated by means of Vickers microhardness measurements and scratch tests. Unreinforced 6061 Al matrix alloy was also studied for comparison. To explore the effect of heat treatment, materials subjected to three different heat treatment conditions, i.e. under-aged, over-aged and T6, were used. Multiplescratch tests using a diamond and a steel indentor were also carried out to simulate real abrasive wear processes. Vickers microhardness measurements indicated that T6 heattreated composites had the highest hardness. Single-scratch tests showed that the variation of friction coefficient was similar to that of Vickers hardness and the peak-aged composites exhibited the best wear resistance. The wear rate of fine particle-reinforced composites was mainly affected by hardness. However, the wear rate of large particle-reinforced composites was influenced by both the hardness and fracture of the particles.  相似文献   

12.
Powder metal processing permits development of new composites with specific properties required for demanding applications. Complex shaped machine elements like gears and bearings are made of powder metallurgy technique economically. In many applications these machine elements operate under unlubricated conditions and there is a need for materials with good friction and wear characteristics, strength and modulus. In the present study, Fe–C–Cu–Ni alloys with solid lubricant, MoS2, were developed using a simple single stage compaction and sintering. The microstructure, strength, hardness and tribo behavior of the composites were evaluated. The friction and wear characteristics were evaluated using pin-on-disc type tribo test machine. Addition of solid lubricant improved the compressibility and thereby the density of the compacts. Presence of the secondary sulphide phases in the as-sintered compacts improves the hardness and strength. The coefficient of friction and wear loss decreased with addition of MoS2. A simple wear model is proposed to predict the wear loss in these composites. The model predicts wear loss values that are in agreement with the experimental data.  相似文献   

13.
The microstructural and mechanical behavior of hybrid metal matrix composite based on aluminum alloy 6082-T6 reinforced with silicon carbide (SiC) and boron carbide (B4C) particles was investigated. For this purpose, the hybrid composites were fabricated using conventional stir casting process by varying weight percentages of 5, 10, 15, and 20?wt% of (SiC?+?B4C) mixture. Dispersion of the reinforced particles was studied with x-ray diffraction and scanning electron microscopy analyses. Mechanical properties such as micro-hardness, impact strength, ultimate tensile strength, percentage elongation, density, and porosity were investigated on hybrid composites at room temperature. The results revealed that the increase in weight percentage of (SiC?+?B4C) mixture gives superior hardness and tensile strength with slight decrease in percentage elongation. However, some reduction in both hardness and tensile strength was observed in hybrid composites with 20?wt% of (SiC?+?B4C) mixture. As compared to the un-reinforced alloy, the improvement in hardness and tensile strength for hybrid composites was found to be 10% and 21%, respectively. Reduction in impact strength and density with increase in porosity was also reported with the addition of reinforcement.  相似文献   

14.
Aluminum matrix composites reinforced with SiC and graphite (Gr) particles are a unique class of advanced engineered materials that have been developed to use in tribological applications. The conventional techniques for producing these composites have some drawbacks. In this study, a new method, namely In situ Powder Metallurgy (IPM), is applied for the preparation of Al6061/SiC/Gr hybrid composites. In this method, the stir casting and the powder metallurgy synthesizing processes are combined into an integrated net shape forming process. 0?C40 vol.% of SiC particles with an average size of 19 ??m, along with 9 vol.% of uncoated Gr particles, were introduced to the molten 6061 aluminum alloy. Then, the slurries were stirred in a specified time?Ctemperature regime resulting in mixtures of the SiC, Gr, and aluminum powder particles. The powder mixtures were cold pressed in six different pressures (between 250 and 750 MPa) and sintered. Finally, the produced composites were heat treated and their hardness and wear properties were investigated. Homogenous distribution of the SiC and Gr particles within the powder mixtures and the hybrid composites is clear from the SEM images. The results also show that the SiC particles decrease the compressibility of the hybrid powders and improve the hardness of composites. The best wear resistance is achieved in the hybrid composite containing 20 vol.% SiC particles.  相似文献   

15.
Y-TZP/MoS2自润滑材料的制备与研究   总被引:2,自引:0,他引:2  
通过醇-水溶液加热方法,制备出Y-TZP包裹MoS2复合粉末,通过热压烧结,制备具有特殊显微结构、力学性能优良的Y-TZP/MoS2复合材料,考察了室温下复合材料与ZrO2配副时的摩擦学性能.结果表明当材料中含有44wt%MoS2时,其摩擦系数为0.25、磨损率为1 05×10-6mm3/m·N.  相似文献   

16.
Poor friction and wear resistance are the major drawbacks that restrict structural applications of ZK60 magnesium alloys. The surface properties of magnesium alloy can be enhanced by reinforcing particles in the surface using friction stir processing (FSP). Tool pin profile is the significant process parameters which influences the material flow, particle breakups and its distribution in the processed zone. In this study, an attempt was made in order to understand the major effects of tool pin profiles namely, cylindrical thread (CT), plain cylindrical (PC), plain tapered cylindrical (PTC) and square (SA) pin profiles on the microstructure characteristics and particle distribution of friction stir processed/silicon carbide particle surface composites. The surface composites fabricated by plain tapered cylindrical pin profile yield superior properties which is attributed to the higher shear force and balanced state of material flow and heat generation in the processed zone. The formation of smaller grains and hardness enhancement due to dispersion strengthening are the main causes to get better wear resistance of friction stir processed/silicon carbide particle magnesium alloy.  相似文献   

17.
In the present investigation, A390/graphite and A390/Al2O3 surface composite (SC) layers were fabricated using friction stir processing (FSP). The effect of tool rotational and traverse speeds on the microstructural, mechanical and wear characteristics of the surface layers was studied. The results revealed that increasing the tool rotational speed increases the hardness of the composite layers. The traverse speed has less significant influence on the hardness of the composite layer than the tool rotational speed. The A390/Al2O3 surface composites exhibited higher hardness than the A390/graphite surface composites. The surface composites exhibited better wear resistance than the matrix alloy. The A390/Al2O3 surface composites exhibited lower wear rates than the A390/graphite surface composites. Increasing the tool rotational reduces the wear rate of both A390/Al2O3 and A390/graphite surface composites.  相似文献   

18.
Aluminium Matrix Composites (AMCs) reinforced with particulate form of reinforcement has replaced monolithic alloys in many engineering industries due to its superior mechanical properties and tailorable thermal and electrical properties. As aluminium nitride (AlN) has high specific strength, high thermal conductivity, high electrical resistivity, low dielectric constant, low coefficient of thermal expansion and good compatibility with aluminium alloy, Al/AlN composite is extensively used in electronic packaging industries. Joining of AMCs is unavoidable in many engineering applications. Friction Stir Welding (FSW) is one of the most suitable welding process to weld the AMCs reinforced with particulate form of ceramics without deteriorating its superior mechanical properties. An attempt has been made to develop regression models to predict the Ultimate Tensile Strength (UTS) and Percent Elongation (PE) of the friction stir welded AA6061 matrix composite reinforced with aluminium nitride particles (AlNp) by correlating the significant parameters such as tool rotational speed, welding speed, axial force and percentage of AlNp reinforcement in the AA6061 matrix. Statistical software SYSTAT 12 and statistical tools such as analysis of variance (ANOVA) and student’s t test, have been used to validate the developed models. It was observed from the investigation that these factors independently influenced the UTS and PE of the friction stir welded composite joints. The developed regression models were optimized to maximize UTS of friction stir welded AA6061/AlNp composite joints.  相似文献   

19.
Friction stir processing (FSP) was applied to fabricate boron carbide (B4C) particulate reinforced copper surface composites. The effect of FSP parameters such as tool rotational speed, processing speed and groove width on microstructure and microhardness was investigated. A groove was contrived on the 6 mm thick copper plates and packed with B4C particles. FSP was carried out using five various tool rotational speeds, processing speeds and groove widths. Optical and scanning electron microscopies were employed to study the microstructure of the fabricated surface composites. The results indicated that the selected FSP parameters significantly influenced the area of surface composite, distribution of B4C particles and microhardness of the surface composites. Higher tool rotational speed and lower processing speed produced an excellent distribution of B4C particles and higher area of surface composite due to higher frictional heat, increased stirring and material tranportation. The B4C particles were bonded well to the copper matrix and refined the grains of copper due to the pinning effect of B4C particles. B4C particles retained the original size and morphology because of its small size and minimum sharp corners in the morphology.  相似文献   

20.
The current study explores the feasibility of artificial aging treatment to aluminium alloy 6061 hybrid composites reinforced with graphite and fine granite particulates to suit structural applications. Aging at 100 °C retrieved a better response of the hybrid composites as compared to that at 150 °C in terms of peak hardness and strength. Among the five different stir‐cast compositions, the composition of aluminium 6061 with 2 wt. % graphite and 4 wt. % granite showed enhanced mechanical properties than that of the base alloy as well as mono reinforcement type composites which was attribued to the formation of rod‐shaped β‐Mg2Si precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号