首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 192 毫秒
1.
初稿;修改稿 作者简介:〖ZK(〗(1980-),男,硕士,研究实习员,从事材料加工.〖ZK)〗 *Tel:024-23971986〓E-mail:〖FQ)〗〖HT〗〖HJ〗 〖JZ(〗〖HT2H〗〖STHZ〗〖WTHZ〗  研究了涂有NaCl盐膜的1Cr25Ni20Si2合金在700、800和900℃空气中的腐蚀行为.采用X-射线衍射和带有能谱的扫描电镜对腐蚀产物进行了分析.结果表明,NaCl沉积盐使合金在3个温度下发生快速腐蚀,合金表面形成了很厚的外层为富Fe氧化物,内层为富Cr氧化物的腐蚀产物层.并且,合金发生了严重内腐蚀,形成贫Cr层,并出现许多空洞.此外,探讨了合金的腐蚀机制.  相似文献   

2.
不同H2S分压下N80油管钢的CO2/H2S腐蚀行为   总被引:2,自引:0,他引:2  
采用高温高压釜试验,辅以失重法计算和扫描电镜分析,对不同H2S分压(O.0015 MPa,0.015 MPa,0.02MPa,0.06 MPa,0.12 MPa)下N80油管钢的CO2/H2S腐蚀行为进行了研究.结果表明,在试验H2S分压范围内,N80油管钢发生了极严重的CO2/H2S腐蚀;随着Hzs分压的升高,腐蚀速率先增加后降低,且在H2s分压为0.02 MPa时腐蚀速率取得最大值.  相似文献   

3.
在模拟油田CO2/H2S共存的腐蚀环境中,研究了温度、CO2分压、H2S分压对N80、P110两种油管钢动态腐蚀行为的影响。结果表明,在实验参数范围内,随着温度、CO2分压、H2S分压的变化,两种材质的动态腐蚀速率都呈现了先增大后减小的变化趋势,且P110钢的腐蚀速率大于N80钢的腐蚀速率。  相似文献   

4.
国产X80管线钢的H2S应力腐蚀开裂行为   总被引:3,自引:0,他引:3  
采用三点弯曲加载法,研究了国产X80管线钢及其焊接接头的抗H2S环境应力腐蚀开裂(SSCC)行为.结果表明,热影响区(HAZ)对应力腐蚀开裂最为敏感,主要是HAZ组织不均匀、晶粒粗大、硬度大,易引起局部腐蚀,从而导致该区SSCC敏感性高。母材的纵向和横向取样对H2S应力腐蚀不敏感,薄壁管材较厚壁管材有更好的H2S环境应力腐蚀抗力.   相似文献   

5.
对C02/H2S环境中常规油管钢的腐蚀产物的已有研究成果进行了归纳分析,结果表明,在100℃附近,CO2/H2S共存环境中,油管钢表面形成的FeS膜的保护性优于FeCO3,对金属腐蚀有抑制作用.总结出了油管钢的两类分压比规律:第一类分压比,体系中的C02分压保持不变,逐渐增加H2S的分压,腐蚀速率会出现极值;第二类分压...  相似文献   

6.
渗铝钢耐饱和H2S溶液腐蚀的研究   总被引:1,自引:0,他引:1  
用极化曲线方法对氧化处理前后的渗铝钢在饱和H2S水溶液中的耐蚀性进行了研究。结果表明,高温氧化处理后的渗铝钢在常温下也具有很好的耐H2S腐蚀性能,并且氯离子的存在对其腐蚀性能没有明显的影响。  相似文献   

7.
利用高温高压釜设备模拟油气田环境并辅以失重法,研究了高Cl-条件下H2S分压对P110钢腐蚀速率的影响,结果表明:P110钢的腐蚀速率随着H2S分压的增大呈先增大后减小的趋势,且在0.06 MPa时取得最大值;采用扫描电子显微镜(SEM)、X射线衍射(XRD)和X射线能谱仪(EDS)技术对腐蚀产物膜进行分析知:H2S分压通过影响腐蚀产物膜厚度、微观吸附形貌和表面膜成分等,进而影响了P110钢的腐蚀速率.  相似文献   

8.
通过模拟某气田CO2/H2S共存腐蚀介质环境,对比研究了SM80SS油管钢在加与未加缓蚀剂时的腐蚀特征.结果表明,在未加自制缓蚀剂TG500的腐蚀溶液中,SM80SS油管钢的腐蚀速率随H2S分压的升高而缓慢增加;当溶液中加入TG500(浓度200 mg/L)后,SM80SS钢的腐蚀速率显著降低、且随着H2S分压的增加明显下降,而缓蚀效率却呈上升趋势,均达90%以上.  相似文献   

9.
L80钢在CO2/H2S腐蚀环境中的力学特性   总被引:1,自引:1,他引:0  
目的:研究L80钢在CO2/H2S环境中的力学特性。方法利用微机控制慢应变速率拉伸试验机,对特定腐蚀条件下的L80钢试样进行拉伸实验,分析各因素对L80钢力学特性的影响变化规律。结果在CO2/H2S环境中,随着含水率的增加,L80钢的屈服强度、抗拉强度、延伸率均下降,L80钢拉伸曲线出现劣化。随预拉应力的增大,L80钢的屈服强度变化不明显,而抗拉强度和延伸率降低,当预拉应力超过0.8σs时,L80钢的腐蚀速率显著增加,表现出较强的应力腐蚀敏感性;随着H2S分压的增加, L80钢的力学性能发生劣化,表现出氢脆敏感性,而受CO2分压的影响不明显;温度升高导致L80钢的拉伸曲线出现了轻度劣化,延伸率和屈服区宽度小幅降低,但抗拉强度变化不大。结论 L80钢在CO2/H2S环境中的力学特性受温度、CO2分压影响程度小。含水率和预拉应力的增大降低了L80钢的力学韧性,预拉应力的存在使L80腐蚀速率加快,缩短了耐腐蚀寿命。L80钢的力学性能对于H2S分压较对CO2分压更为敏感,试样的断裂是机械拉力和应力腐蚀共同作用的结果。  相似文献   

10.
在高温、高Cl~-含量及不同H_2S/CO_2分压条件下对超级双相钢UNS S32750进行了腐蚀浸泡试验,并采用失重法、激光共聚焦显微镜、X-射线光电子能谱(XPS)分析了超级双相不锈钢UNS S32750的均匀腐蚀速率、点蚀形貌和表面钝化膜组成。结果表明:在试验条件下当H_2S/CO_2分压不大于30kPa/150kPa时,超级双相不锈钢UNS S32750具有良好的耐均匀腐蚀和点蚀性能;但当H_2S/CO_2分压为100kPa/500kPa时,H_2S造成了钝化膜的局部破坏,引发阳极性溶解,使超级双相不锈钢UNS S32750发生点蚀;钝化膜主要由FeS_2、NiO、NiS、Cr_2O_3及Fe(OH)_2组成。  相似文献   

11.
李冬梅  龙武  邹宁 《表面技术》2016,45(7):102-108
目的研究高温条件下抗硫低合金钢P110SS在低H2S、高CO_2环境中的腐蚀行为。方法模拟我国西部酸性油田工况环境,利用高温高压设备,通过失重法测试腐蚀速率,并用SEM、EDS和XRD分析腐蚀产物。结果在8 MPa的纯CO_2环境中,腐蚀速率随温度升高而降低,210℃时为0.35 mm/a,腐蚀产物为碳酸盐。当加入6 k Pa硫化氢时,腐蚀速率依然随温度升高而降低,150℃时为0.74 mm/a,腐蚀产物呈现双层结构,内层为结晶良好的FeCO_3,外层为FeS。当硫化氢分压升至165 k Pa时,腐蚀加剧,且腐蚀速率随温度升高而增大,210℃时达2.78 mm/a,腐蚀产物主要为铁的硫化物,同时随腐蚀时间延长至2160 h,腐蚀速率有所降低。结论在纯CO2环境中,高温时生成的内层碳酸盐腐蚀产物膜相对完整,对基体的保护能力较强。当加入6 k Pa硫化氢时,腐蚀由CO_2主导,呈现与纯CO_2环境中相同的腐蚀速率规律,内层的FeCO_3细密均匀。当硫化氢分压升至165 k Pa时,腐蚀由H_2S和CO_2混合控制,疏松破损的铁的硫化物无法对基体形成良好的保护,因此腐蚀速率显著升高。  相似文献   

12.
张杰  李林涛  黄知娟 《表面技术》2016,45(7):96-101
目的针对IS15156标准中对双相不锈钢使用条件的限制,研究双相不锈钢2205在不同温度、不同低H_2S分压条件下的开裂敏感性。方法通过模拟我国西部酸性油田低H_2S、高CO_2工况环境,利用高温高压设备,进行了三点弯曲试验,结合失重法测试腐蚀速率,并使用SEM和EDS进行微观形貌观察和腐蚀产物分析。结果双相不锈钢2205的腐蚀速率较低,未超过0.014 mm/a,且硫化氢分压对腐蚀的影响较小,但发现了由氧化铝等夹杂导致的点蚀。双相不锈钢2205在低硫化氢分压的中温(100℃)区发生应力腐蚀开裂,同时发生了选择性腐蚀,铁素体相优先于奥氏体相腐蚀,其他温度条件下仅发现点蚀。硫化氢分压升高时,开裂敏感性有一定程度的降低。结论双相不锈钢2205在低硫化氢分压条件下的开裂类型为氢脆型应力腐蚀开裂。氧化物夹杂诱发点蚀,氢在应力集中区域聚集,发生氢脆。当硫化氢分压从6 k Pa增加到165 k Pa时,局部腐蚀敏感性的增加使氢脆得到缓解,开裂敏感性降低。双相不锈钢2205无法在低硫化氢的中温井口环境中使用,标准中以H_2S分压作为使用限制并不十分完善。  相似文献   

13.
目的针对IS15156标准中对超级13Cr-110马氏体不锈钢使用条件的限制,及不同研究者对其开裂条件的不同观点,研究超级13Cr-110马氏体不锈钢在不同温度、不同低H_2S分压条件下的开裂敏感性。方法通过模拟我国西部酸性油田低H_2S高CO_2环境,利用高温高压设备,进行了三点弯曲试验,并结合失重法测试腐蚀速率。结果在硫化氢分压为6kPa时,超级13Cr-110马氏体不锈钢腐蚀速率随温度降低而减小,80℃时仅0.0031mm/a,但应力腐蚀开裂敏感性增加。在210℃条件下,当硫化氢分压从6kPa升至165kPa时,腐蚀速率变化不明显。同时,超级13Cr-110马氏体不锈钢的开裂敏感性降低,但长周期实验依然会发现裂纹。结论通过对裂纹及断口形貌分析发现,超级13Cr-110马氏体不锈钢在低H_2S分压条件下的开裂类型为氢脆型硫化物应力腐蚀开裂,即局部钝化膜遭受破坏,进而发生点蚀,导致氢在应力集中区域聚集,最后发生氢脆。硫化氢分压从6kPa增加到165kPa,局部腐蚀受到抑制,由点蚀导致开裂的敏感性降低。超级13Cr-110马氏体不锈钢不一定能在标准中推荐的硫化氢分压不大于10kPa的条件下使用。  相似文献   

14.
影响低合金钢材抗H2S腐蚀的因素   总被引:7,自引:0,他引:7  
较系统地综述了低合金钢材抗H2S腐蚀的影响因素,试图为相关产品的开发、研究提供有益的借鉴.   相似文献   

15.
目的:研究L80油管在CO2/H2S环境中的腐蚀行为。方法利用扫描电镜(SEM)、EDAX能谱分析L80油管内壁腐蚀产物形貌特征和化学组成,采用高温高压反应釜,以实际油水分离的水样为腐蚀介质进行模拟实验,研究原油含水率、CO2/H2S 分压和温度对 L80油管腐蚀速率的影响规律。结果在CO2/H2S环境中,L80油管内壁呈现明显的局部腐蚀特征,部分表面点蚀坑深度超过100μm,形成FeS、FeCO3等腐蚀产物。随着含水率的增加,L80油管腐蚀速率逐渐增大,含水率为30%时的腐蚀速率为0.0377 mm/a,含水率为100%时的腐蚀速率为0.0952 mm/a。CO2分压不变时,随着 H2S分压的增加,L80钢的腐蚀速率增大,H2S分压为0.04 MPa时的腐蚀速率为0.0377 mm/a,H2S分压为0.3 MPa时的腐蚀速率为0.0952 mm/a;H2S分压不变时,随着CO2分压的增大,L80钢腐蚀速率变化不明显且腐蚀速率较小。随着温度的升高,腐蚀速率先以较大幅度增大,再以较小幅度减小,从40℃增加至100℃时,腐蚀速率由0.0083 mm/a升至0.1264 mm/a,100℃左右时的腐蚀速率最大,120℃对应的腐蚀速率为0.106 mm/a。结论 L80油管在CO2/H2S环境中以均匀腐蚀和局部点蚀为主。L80油管腐蚀速率对H2S分压比CO2分压更敏感,CO2分压增大促使具有良好保护性的FeCO3保护膜的形成,降低了腐蚀速率。温度升高至一定范围,导致碳酸盐等难溶性盐溶解度降低,并覆盖在钢表面形成保护层,从而使腐蚀速率下降。  相似文献   

16.
目的:研究 CO2分压对 CO2/H2S腐蚀的影响规律,为海底管道材料的选择提供参考依据。方法采用高温高压反应釜进行腐蚀模拟实验,对腐蚀前后的试样进行称量,计算腐蚀速率。通过SEM观察腐蚀产物膜形貌,通过 XRD 分析腐蚀产物膜成分。结果当 CO2/H2S 分压比较高(1200)时, CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为1.87、3.22、5.35 mm/a,随着CO2分压升高,腐蚀速率几乎呈线性增大趋势。当CO2/H2S分压比较低(200)时,CO2分压为0.3、0.5、1.0 MPa对应的腐蚀速率分别为3.47、3.64、3.71 mm/a,CO2分压变化对腐蚀速率的影响并不显著。当CO2/H2S分压比较高(1200)时,腐蚀产物以FeCO3为主,腐蚀受CO2控制;此时低CO2分压下的腐蚀产物膜较完整致密,高CO2分压下的腐蚀产物膜局部容易破裂,对基体保护性下降,因此腐蚀速率随CO2分压升高而增大。当CO2/H2S分压比较低(200)时,腐蚀产物以FeS为主,腐蚀受H2S控制;此时在不同CO2分压条件下,腐蚀产物均较完整致密,因此腐蚀速率相对较低,并未随着CO2分压升高显著增大。结论 CO2分压对CO2/H2S腐蚀速率的影响与CO2/H2S分压比密切相关,海底管道材料选择不仅要考虑CO2分压的影响,还要考虑CO2/H2S分压比的影响。  相似文献   

17.
分析了硫化氢腐蚀钢材的原理,针对耐硫化氢腐蚀环境,就合金元素及微合金化、控制轧制对低合金高强度钢组织及性能的影响进行论述,提出了耐硫化氢腐蚀的低合金高强度钢的设计思路.  相似文献   

18.
模拟塔里木油田环境中低Cr钢的H2S/CO2腐蚀行为   总被引:1,自引:0,他引:1  
于少波  赵国仙  韩勇 《腐蚀与防护》2009,30(5):289-292,354
通过高温高压腐蚀试验,运用SEM、XRD、EDS等分析技术.研究了普通P110与3Cr110钢在模拟塔里木油田现场环境中的CO2/H2S腐蚀特征.结果表明:在模拟CO2腐蚀环境中,这两种材料的腐蚀产物为FeCO3,3Cr110表现出良好的抗CO2均匀腐蚀及局部腐蚀能力,其平均腐蚀速率显著小于普通P110;模拟CO2/H2S腐蚀条件下,两种材料的均匀腐蚀速率远小于单独CO2腐蚀环境下的均匀腐蚀速率,表面腐蚀产物为FeS,H2S腐蚀占主导作用,Cr元素在低Cr钢腐蚀产物膜中的富集,其腐蚀产物Cr(OH)3改善了腐蚀产物膜的稳定性,显著提高了低Cr钢的抗均匀腐蚀及局部腐蚀能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号