共查询到19条相似文献,搜索用时 96 毫秒
1.
2.
采用微波辅助稀酸法对棉花秸秆进行水解糖化。探索了微波辐射温度、微波辐射时间、料液比及硫酸浓度对秸秆水解糖化效果的影响。结果表明,微波辅助棉花秸秆稀酸水解糖化的最佳糖化工艺条件为:微波辐射温度80℃,微波辐射时间50min,料液比1∶16g/mL,硫酸浓度3.0%。各影响因素对还原糖收率的影响顺序为:料液比微波辐射温度硫酸浓度微波辐射时间。在最佳糖化工艺条件下,还原糖收率为3.17%。 相似文献
3.
4.
5.
介绍了酸析气浮-水解酸化-接触氧化工艺在处理改性纤维素废水中的应用.运行结果表明,进水CODCr=1200 mg/L、BOD5=500 mg/L、SS=600 mg/L时,出水达到GB 8978-1996一级排放标准. 相似文献
6.
响应面优化酶法提取紫菜多糖工艺研究 总被引:1,自引:0,他引:1
利用纤维素酶辅助提取紫菜多糖,以酶添加量、提取温度、提取时间和pH作为响应面设计的变量.结果表明,纤维素酶辅助提取紫菜多糖的优化工艺条件为:酶添加量1.5%,提取温度51℃,pH 5.0,提取时间为80 min,在此条件下,多糖得率为19.46%. 相似文献
7.
金属离子助催化稀酸水解纤维素工艺的研究 总被引:1,自引:0,他引:1
以小麦秸秆为原料,采用正交试验考察了硫酸浓度、Fe2+浓度、反应温度和反应时间等因素对稀酸水解纤维素的还原糖得率的影响,得到了优化的纤维素水解反应工艺组合:反应温度180℃,Fe2+浓度0.0375mol/L,硫酸质量分数1%,反应时间90min。研究了Fe2+、Ni2+、Na+、Mg2+四种金属离子对稀酸水解纤维素制备还原糖的影响,结果表明,金属离子能明显提高稀酸水解纤维素的转化率和还原糖得率,其助催化作用的大小依次为:Fe2+Na+Ni2+Mg2+,Fe2+对稀酸水解小麦秸秆制备还原糖的催化效果最佳,还原糖得率最高可达73.05%,纤维素转化率达到85.79%。 相似文献
8.
纤维素稀酸水解产物中发酵抑制物的去除方法 总被引:4,自引:0,他引:4
在纤维素稀酸水解发酵制乙醇的过程中,由于弱酸、呋喃衍生物和苯系化合物对微生物的影响,乙醇的产量和产率都不高。针对国内对这些抑制物质的去除研究较少的现状,重点介绍了国外去除纤维素稀酸水解产物中发酵抑制物的各种方法,这些方法能有效地降低各种抑制物质的影响,从而能够获得更高的乙醇产量和产率。 相似文献
9.
采用酶法优化提取金银花中的绿原酸,考察纤维素酶的用量、酶解时间、酶解温度及回流提取温度对绿原酸含量的影响;用高效液相色谱法(HPLC)测定绿原酸含量,用纤维素酶法提取金银花可提高绿原酸得率。酶法提取最佳条件为:加入纤维素3.0%,在46℃下酶解4h,再在56℃下浸提1h,其绿原酸含量为3.57%。 相似文献
10.
对纤维素原料的预处理技术、纤维素酶生产以及纤维素的酶解工程等方面的研究现状与最新进展进行了综述。作者在文献调研及近年来科研工作积累的基础上,对可再生纤维素资源酶法降解研究以及今后的发展趋势和努力方向提出了自己的观点。 相似文献
11.
12.
13.
为了降低里氏木霉生产纤维素酶的成本,研究了小麦秸秆经白腐菌和酸处理后主要成分如纤维素、木聚糖、木质素含量的变化,采用正交实验考察了里氏木霉菌发酵小麦秆生产纤维素酶的最佳条件,研究得到的最佳条件为:小麦秆∶麸皮=2∶3,培养温度30℃,起始pH 5.0,发酵时间48 h。通过对正交实验条件的优化,发酵液滤纸酶活(FPA)为6.11 IU.mL-1,羧甲基纤维素酶活(CMCase)为29.11 IU.mL-1,纤维二糖酶活(CBA)为16.11 IU.mL-1。和原工艺相比FPA、CMCase和CBA分别提高了30.78%、26.82%和37.11%。 相似文献
14.
纤维素酶水解纤维素类废弃物的研究 总被引:6,自引:0,他引:6
研究了纤维素酶水解纤维废弃物的适宜条件。研究结果表明,在底物浓度80 g/L,pH 4.8,酶解温度50℃,酶用量100 IU/g(对底物),酶解时间60 h条件下,处理纤维废弃物,可以得到较高的还原糖浓度,酶解液还原糖浓度可达到16.44 mg/mL,酶解液及残渣可分别进一步加以利用。 相似文献
15.
麦秸纤维素酶解法制糖研究 总被引:12,自引:3,他引:12
对麦秸纤维素预处理过程的影响因素进行了探索,着重对酶解产糖工艺过程进行了讨论分析。结果表明:粉碎至120~150目并经1%NaOH溶液浸渍的麦秸是一种理想的制糖原料;当该原料在50~55℃,pH为4.4,时间为15h以及适宜的酶与底物配比条件下,可获得理想的产糖率。 相似文献
16.
对自制的环氧小麦秸秆纤维素球进行改性,制备了两种改性小麦秸秆纤维素球。用正交设计法设计实验方案,探讨了其制备的优化实验条件。实验结果表明:当三乙胺盐酸盐溶液体积为4 mL、无水碳酸钠的用量为0.6 g、溶剂为30%乙醇溶液、反应时间为6 h时,制得的三乙胺盐酸盐改性小麦秸秆纤维素球(WS-MB-TEAHC)对Cu2+的吸附容量最大;当乙二胺盐酸盐溶液体积为8 mL、无水碳酸钠的用量为0.6 g、溶剂为30%二氧六环、反应时间为6 h时,制得的乙二胺盐酸盐改性小麦秸秆纤维素球(WS-MB-EDADHC)对Cu2+的吸附容量最大。红外光谱表征显示:环氧小麦秸秆纤维素球的环氧基参与了反应,改性后引入了含N官能团。 相似文献
17.
以自制的小麦秸秆纤维素为原料,通过对直接活化成球环氧化和先交联后活化环氧化进行正交试验,比较了直接活化、仅交联和先交联后活化三种条件下的环氧值,得到了最佳环氧化条件。在两条制备途径各自最佳实验条件下,通过先交联后活化,可使环氧值增大到0.7074mol/100g,并制备了环氧小麦秸秆纤维素球。通过扫描电镜和红外光谱表征,证实制取的环氧小麦秸秆纤维素球具有圆球的形状和一定的孔隙结构,且环氧化后引入了环氧基官能团。 相似文献
18.