共查询到18条相似文献,搜索用时 100 毫秒
1.
基于PCC的神经网络PID控制器设计 总被引:1,自引:1,他引:1
提出了一种基于可编程计算机控制器(PCC)的神经网络PID控制器,实现了以新一代PCC为硬件,利用神经网络逼近任意非线性函数的能力,对PID控制算法中的三个参数K_p,K_i,K_d进行在线调整,并利用神经网络模型对被控对象的输出值进行预测,根据预测值对神经网络各层中的加权系数进行在线修正,同时引入了带死区的控制算法;该控制方案具有调节速度快、适应能力强、可靠性高等优点;实验结果表明,该控制器具有强抗扰、响应快、鲁棒性好等特点。 相似文献
2.
基于神经网络的PID控制器 总被引:14,自引:0,他引:14
提出了一种新型PID控制器,该控制器利用BP网络实现PID参数的在线调整,采用RBF网络对被控对象在线辨识。仿真结果表明该控制器的控制效果优于传统的PID控制算法和模糊自适应PID控制算法。 相似文献
3.
提出了一种新型的基于优化BP神经网络结构的PID控制器(PID-NNC),该控制器将神经网络和PID控制规律融为一体,既具有神经网络自学习,自适应及逼近任意函数的能力,又具有常规PID控制器结构简单,可靠性高的特点,且控制器的算法采用的是优化的BP算法,可以避免网络陷入局部极小点,也可以加快网络的训练速度,所以该控制器可以对具有非线性,时变性和不确定性等复杂系统实行控制。利用MATLAB软件对非线性系统进行了仿真研究,其仿真结果表明该控制器具有很好的控制效果。 相似文献
4.
5.
BP神经网络已被广泛应用于PID控制器的优化调参,但这种调参方法具有收敛速度慢、学习时间长、连接权重初值为随机值、易于陷入局部极小等缺点.本文提出了一种不同于用BP网络调整PID参数的新的融合方法:PID神经网络控制器(PIDNN):该控制器不仅能克服以上缺点,而且具有很好的鲁棒性.本文对PIDNN在某无人机姿态控制系统的应用进行了仿真研究,仿真结果表明该控制器能够大大地改善姿态控制系统性能. 相似文献
6.
提出了一种基于遗传算法和神经网络的自适应PID控制器的设计方法。该控制器主要由三个部分组成:利用遗传算法优化PID参数,和RBF神经网络结合,对被控对象逼近,搜索出一组准优的初始参数;RBF神经网络完成对被控对象Jacobian信息辨识;基于单神经元的自适应PID控制器,在线调整PID参数,以确保系统的响应具有最优的动态和稳态性能。仿真结果表明,控制器具有响应速度快,稳态精度高等特点,可用于控制不同的对象和过程。 相似文献
7.
《微型机与应用》2015,(17):7-11
PID控制器是过程控制中应用最为广泛的控制器,而传统PID控制器参数整定难以达到最优状态,同时,存在控制结果超调量过大、调节时间偏长等缺点,因此,将变异粒子群优化算法(Mutation Particle Swarm Optimization,MPSO)运用于BP-PID的参数整定过程中,设计了一种高效、稳定的自适应控制器。考虑MPSO的变异机制,以种群适应度方差与种群最优适应度值为标准,进行种群变异操作,可以克服早熟,提高收敛精度和PSO的全局搜索能力,使MPSO优化的BP神经网络整定的PID控制器能以更快的速度、更高的精度完成过程控制操作。在实验中,通过比较BP-PID、PSOBP-PID以及MPSO-BP-PID三控制器仿真结果,证明了所提MPSO算法的有效性和所设计MPSOBP-PID控制器的优越性。 相似文献
8.
基于神经网络的自整定PID控制器设计 总被引:1,自引:1,他引:1
针对非线性时变系统,设计了一种基于神经网络的参数在线自整定PID控制器.该控制器采用基于最近邻聚类方法的RBF神经网络快速学习算法,通过实时在线辨识,建立被控系统的精确模型并得到准确的Jacobian信息;同时将此信息提供给BP神经网络,从而实现PID控制器参数的自动在线整定. 仿真结果表明,该方法提高了算法的精度和速度并具有较快的系统响应和良好的跟踪特性. 相似文献
9.
刘畅 《计算机工程与科学》2011,33(4):154
针对BP神经网络PID控制算法的复杂性及实现的困难性,本文提出了一种使用DSP芯片来实现的方案,外围功能接口则由辅助芯片FPGA来完成。利用TI公司提供的RTOS(DSP/BIOS)快速开发出该控制器原型,并通过对伺服电机的转速控制实验,对比传统的PID控制后,证明了该方案的实时性及控制性能都能满足工程需求。 相似文献
10.
11.
针对传统的PID算法由于难以给出精确的数学模型,使得系统参数设定困难,同时系统控制效果上存在一定的缺陷,造成系统安全性和可靠性降低,系统控制质量不高。为了解决传统的PID算法所带来的问题,提出了基于模糊神经网络的PID算法,将PID算法、模糊控制算法以及神经网络算法相结合,形成了一种智能控制算法。将算法应用在PLC控制系统中,实验表明算法有效的实现了PID参数的自整定,并且提高了控制质量,具有一定的实际应用推广价值。 相似文献
12.
以数控系统的伺服电机控制为例,使用ARM微处理器芯片设计与实现软PLC,在此PLC的基础上,结合模糊控制理论和PID控制算法,通过MATLAB仿真完成参数整定,设计了以个基于模糊PID算法的电机控制系统.该系统不仅应用于数控系统,也可用于其它行业的电机控制. 相似文献
13.
14.
15.
16.
针对在非线性、时变不确定系统中,常规PID控制器难以获得满意效果的问题,仿照传统PID控制器结构,设计了一种基于T-S模型的模糊神经网络PID控制器。该控制器基于T-S模糊模型,将PID结构融入模糊控制中,充分发挥了模糊系统非线性、可解释性的特点;然后又利用神经网络的学习算法,实现了对模糊控制器的参数调整,使控制器具有了适应时变、不确定系统的自学习和自组织能力。针对非线性、时变系统,将此控制器与传统PID控制器对比进行了仿真研究,并应用于啤酒发酵领域,其结果表明,该控制器取得了令人满意的效果。 相似文献
17.