首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
以In掺杂CdS量子点太阳能电池为例,讨论了SILAR次数对In掺杂CdS量子点敏化太阳能电池性能的影响。通过SEM、EDS、IPCE、紫外吸收光谱、J-V曲线、EIS等实验测试结果表明,当In掺杂CdS的摩尔比固定在1:5时,随着SILAR次数的增加,电池的短路电流密度、开路电压和光电转换效率都随着增加,当SILAR次数为6次时,In掺杂CdS的QDSCs光电转化效率达到了最大值(η=0.76%)。随着SILAR次数的继续增加,其光电转换效率将会下降。  相似文献   

2.
采用连续式离子层吸附与反应(SILAR)法不仅成功制备出CdS量子点敏化的TiO2纳米晶光阳极,而且实现了Mn2+在CdS量子点晶格内部的可控掺杂。应用场发射扫描电子显微镜(FESEM)对电极的形貌进行了分析和表征。继而通过组装光伏电池研究Mn2+掺杂浓度与电池性能之间的关系。通过测量其紫外-可见吸收光谱及电流密度-电压(J-V)特性曲线考察电池性能随Mn2+掺杂量的变化规律。在研究中发现,掺杂适量的Mn2+有助于提高CdS/TiO2光阳极对可见光的吸收,进而增强太阳电池的能量转换效率。当Mn2+浓度为0.075 mmol/L时,量子点敏化太阳电池(QDSSC)的能量转换效率可达2.85%,较未掺杂的光阳极试样性能提高约50%。  相似文献   

3.
岳文瑾  聂光军 《半导体光电》2013,34(5):719-724,71
介绍了聚合物太阳电池的一般原理、性能表征,以及聚合物/量子点太阳电池结构,重点列举了有机及无机量子点在聚合物太阳电池中的应用,最后提出了改善聚合物/量子点太阳电池效率的方法。  相似文献   

4.
半导体量子点的器件应用   总被引:5,自引:1,他引:4  
半导体量子点的生长和性质已成为当今研究的热点。以S-K生长模式已成功地生长了无缺陷的半导体量子点。由于其较强的量子效应,量子点结构的光电器件和电子器件有望比量子阱结构的器件具有更好的性能。介绍了量子点在光电器件中的一些应用,包括单电子晶体管、激光器和红外探测器等。  相似文献   

5.
半导体量子点激光器的发展   总被引:1,自引:0,他引:1  
本文综述了半导体量子点激光器的发展和研究现状,并简单介绍了量子点材料的自组装生长,量子点在其他光电子器件上的应用及其发展趋势。  相似文献   

6.
何红波  周继承  胡慧芳 《半导体光电》2000,21(4):296-298,301
当电子数目很少量,用简谐势来描述量子点中电子所受的约束是一种很准确的近似。文章利用量子力学中的少体理论方法研究了二电子系统和三电子系统的行为。少体理论可以把质心运动和相对运动分离,从而得到精确的数值解。利用单个电子在量子点中的基态波函数的束缚行为,选择了量子点的束缚能。通过对CdS、PbS等半导体纳米粒子的充电电容的计算找到了其在室温下形成单电子器件的最大粒径。  相似文献   

7.
半导体量子点的电子结构   总被引:4,自引:1,他引:4  
半导体量子点是一种具有显著量子尺寸效应的介观体系。文中从固体能带理论出发,对箱形量子点、球形鼻子点、巨型鼻子点以及磁场中量子点的电子结构进行了讨论。  相似文献   

8.
基于InAs/GaAs量子点中间带太阳电池(QD-IBSC)结构和载流子漂移扩散理论建立了计算电流密度与静电势的数学模型,从理论上分析了量子点中间带太阳电池的电压电流特性,定量讨论了量子点层厚度、温度以及n型掺杂对电压电流特性的影响.模拟结果表明:在i层厚度取400 nm时转化效率达到最大值14.01%;温度会对量子点中间带太阳电池的电压电流特性产生影响,温度在300~350 K范围内,开路电压Voc随温度的升高而明显减小,短路电流Jsc几乎不变;对i区进行n型掺杂会抑制量子点层发挥作用.  相似文献   

9.
综述了半导体量子点材料的最新发展动态和发展趋势。  相似文献   

10.
中间带太阳电池是为了充分利用太阳光谱中的红外光子能量而提出的一种高效率新概念太阳电池。介绍了中间带太阳电池的能量上转换原理、量子点中间带的物理优势、量子点中间带太阳电池的结构组态和理论转换效率。评述了它的近期研究进展,并提出了发展这种新概念太阳电池的若干技术对策,其中包括补偿量子点的积累应变、优化量子点的生长参数和选择新的量子点结构。最后指出,由于应变的补偿,有序量子点层的形成以及新量子点结构的采用使太阳电池的光伏性能得以有效改善。可以预期,具有高转换效率的量子点中间带太阳电池的构建与实现将会对未来的光伏技术与产业带来革命性的影响。  相似文献   

11.
采用细致平衡模型计算了GaAs量子阱太阳能电池的转换效率,同时对量子阱结构带来的几种效应,如准费米能级分离、热载流子效应等进行了分析,并将碰撞离化效应引入此细致平衡模型中,通过计算研究了其对量子阱太阳能电池转换效率的影响.结果表明碰撞离化效应可以提高电池的转换效率,但提高幅度有限.  相似文献   

12.
采用细致平衡模型计算了GaAs量子阱太阳能电池的转换效率,同时对量子阱结构带来的几种效应,如准费米能级分离、热载流子效应等进行了分析,并将碰撞离化效应引入此细致平衡模型中,通过计算研究了其对量子阱太阳能电池转换效率的影响.结果表明碰撞离化效应可以提高电池的转换效率,但提高幅度有限.  相似文献   

13.
Graphdiyne, a novel large π‐conjugated carbon hole transporting material, is employed as anode buffer layer in colloidal quantum dots solar cells. Power conversion efficiency is notably enhanced to 10.64% from 9.49% compared to relevant reference devices. Hole transfer from the quantum dot solid active layer to the anode can be appreciably enhanced only by using graphdiyne to lower the work function of the colloidal quantum dot solid. It is found that the all‐carbon buffer layer prolongs the carrier lifetime, reducing surface recombination on the previously neglected back side of the photovoltaic device. Remarkably, the device also shows high long‐term stability in ambient air. The results demonstrate that graphdiyne may have diverse applications in enhancing optoelectronic devices.  相似文献   

14.
An attractive but challenging technology for high efficiency solar energy conversion is the intermediate band solar cell (IBSC), whose theoretical efficiency limit is 63%, yet which has so far failed to yield high efficiencies in practice. The most advanced IBSC technology is that based on quantum dots (QDs): the QD‐IBSC. In this paper, k·p calculations of photon absorption in the QDs are combined with a multi‐level detailed balance model. The model has been used to reproduce the measured quantum efficiency of a real QD‐IBSC and its temperature dependence. This allows the analysis of individual sub‐bandgap transition currents, which has as yet not been possible experimentally, yielding a deeper understanding of the failure of current QD‐IBSCs. Based on the agreement with experimental data, the model is believed to be realistic enough to evaluate future QD‐IBSC proposals.  相似文献   

15.
中间带太阳电池是第三代光伏发电研究中很热门的研究领域之一。论述了中间带太阳电池的原理,以及实现中间带材料的三种方法,即量子点中间带电池、杂质带电池、高失配合金。量子点中间带太阳电池的红外吸收测量证实中间带太阳电池的基本原理是正确的。介绍了为提高短路电流,采用应力补偿技术,增加量子点层数,增大量子点的吸收系数。目前量子点中间带太阳电池的效率达到18%。阐述了杂质带的机理,研究表明,当Si中掺Ti浓度超过Mott相变浓度时,杂质抑制非辐射复合,有效载流子寿命增加。高失配合金具有不寻常的能带结构,AlGaN材料的带隙接近中间带的理想值,很可能成为下一个研究的热点。  相似文献   

16.
用PL谱测试研究了半导体量子点的光致发光性能,分析了不同In组分覆盖层对分子束外延生长的量子点发光特性的影响,及导致发光峰红移的原因.结果显示,In元素有效抑制界面组分的混杂,使得量子点的均匀性得到改善,PL谱半高宽变窄.用InAs覆盖的In0.5Ga0.5As/GaAs自组织量子点实现了1.3um发光.  相似文献   

17.
Semiconductor nanocrystals, the so‐called quantum dots (QDs), exhibit versatile optical and electrical properties. However, QDs possess high density of surface defects/traps due to the high surface‐to‐volume ratio, which act as nonradiative carrier recombination centers within the QDs, thereby deteriorating the overall solar cell performance. The surface passivation of QDs through the growth of an outer shell of different materials/compositions called “core/shell QDs” has proven to be an effective approach to reduce the surface defects and confinement potential, which can enable the broadening of the absorption spectrum, accelerate the carrier transfer, and reduce exciton recombination loss. Here, the recent research developments in the tailoring of the structure of core/shell QDs to tune exciton dynamics so as to improve solar cell performance are summarized. The role of band alignment of core and shell materials, core size, shell thickness/compositions, and interface engineering of core/thick shell called “giant” QDs on electron–hole spatial separation, carrier transport, and confinement potential, before and after grafting on the carrier scavengers (semiconductor/electrolyte), is described. Then, the solar cell performance based on core/shell QDs is introduced. Finally, an outlook for the rational design of core/shell QDs is provided, which can further promote the development of high‐efficiency and stable QD sensitized solar cells.  相似文献   

18.
半导体量子点中强耦合磁极化子的性质   总被引:3,自引:6,他引:3  
采用线形组合算符和么正变换研究了磁场对半导体量子点中强耦合磁极化子基态的影响.结果表明,磁极化子束缚能、磁极化子振动频率随有效束缚强度增大而减小,随电子-体纵光学声子耦合强度增大而增大,随磁场强度增大而增大,即均由于半导体量子点的受限和磁场的增大而使量子点的极化加强,因此半导体量子点的极化是不容忽略的  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号