共查询到14条相似文献,搜索用时 46 毫秒
1.
离子液体因其独特的物化性质已成为溶剂萃取领域中绿色环保、极具应用前景的稀释剂。除了对萃取剂和萃合物有良好溶解性之外,离子液体萃取体系通过离子交换机理的协同作用,往往还展现出更优的萃取性能。而功能离子液体通常是在离子液体结构基础上进行化学修饰,使其兼具离子液体和螯合基团的双重功能,在萃取过程中不仅能用作稀释剂,还具有萃取作用。近十余年来,功能离子液体在放化分离领域已引起广泛关注。本文首先对离子液体和功能离子液体进行了简介,重点讨论其结构上的关联与区别;再以功能为导向,综述了功能离子液体在铀酰离子、钍离子、镧系和次锕系金属离子萃取分离方面的国内外研究现状,并对功能离子液体在镧锕萃取分离领域的未来研究趋势进行了展望。 相似文献
2.
离子液体在核燃料后处理萃取分离过程中被认为具有一定的应用前景。常规的萃取剂在离子液体中展现出比传统溶剂体系更优异的萃取分离性能,因此离子液体自身在其中的角色和作用值得研究。本论文综述了以分子动力学模拟和量子化学计算方法研究离子液体体系萃取分离镧系锕系元素的相关研究工作,重点关注金属离子和金属配合物在离子液体中与离子液体阴阳离子之间的相互作用。 相似文献
3.
离子液体体系的萃取行为及其在乏燃料后处理中的应用前景 总被引:2,自引:0,他引:2
离子液体由于其特有的性质,在乏燃料后处理中的应用已受到广泛关注。本文综述了不同种类离子液体中多种萃取剂对乏燃料所含若干锕系元素及放射性裂片元素的萃取,重点分析了不同萃取体系的萃取效率、萃取选择性、萃取机理和反萃等关键问题。综合目前的研究成果,可发现:离子液体-萃取剂体系由于其独特的萃取机理,通常比传统萃取体系具有更高的萃取效率;一些萃取体系具有高选择性使其在乏燃料后处理中有很好的应用前景。在简要介绍阳离子交换机理、阴离子交换机理和中性复合物机理三种离子液体体系萃取机理的同时,重点总结了萃取中三相问题和协同萃取效应。本文还总结了液-液反萃、超临界CO2反萃和电化学反萃三种常见的反萃方法,讨论了各自的优缺点。本文最后对离子液体在乏燃料中的应用进行了总结与前景展望。 相似文献
4.
从乏燃料中高效分离稀土元素(中子毒物)是实现乏燃料再生循环利用的关键步骤。利用双有机相离子液体选择性浮选分离乏燃料中的稀土元素,使氧化铀和稀土氧化物几乎不被溶解,实现两者固相之间的分离,避免了二次废液的产生,具有节能和环保的双重意义。以2-乙基己基膦酸单-2-乙基己基酯(P507)为稀土元素的捕收剂、煤油或油酸为稀释剂,以1-丁基-3-甲基咪唑六氟磷酸盐([C4mim][PF6])和1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺盐([C4mim][Tf2N])两种离子液体作为浮选体系的另一相,优化得到了浮选分离稀土氧化物的最佳条件。结果发现:浮选分离去除率随着混合物中初始Nd含量以及浮选次数的增加而增加。另外,对所有稀土元素与U3O8分别组成的二元体系混合物进行了浮选分离研究,发现在相同条件下,该体系对不同稀土元素的分离也不同,浮选分离的去除率与稀土氧化物的密度有一定的相关性。在此基础上,利用浮选机开展了工艺化的初步探索,发现该浮选体系对Nd的去除率可达80%以上。 相似文献
5.
离子液体浮选分离模拟乏燃料中的稀土元素 总被引:1,自引:1,他引:1
从乏燃料中高效分离稀土元素(中子毒物)是实现乏燃料再生循环利用的关键步骤。利用双有机相离子液体选择性浮选分离乏燃料中的稀土元素,使氧化铀和稀土氧化物几乎不被溶解,实现两者固相之间的分离,避免了二次废液的产生,具有节能和环保的双重意义。以2-乙基己基膦酸单-2-乙基己基酯(P507)为稀土元素的捕收剂、煤油或油酸为稀释剂,以1-丁基-3-甲基咪唑六氟磷酸盐([C4mim][PF6])和1-丁基-3-甲基咪唑双三氟甲烷磺酰亚胺盐([C4mim][Tf2N])两种离子液体作为浮选体系的另一相,优化得到了浮选分离稀土氧化物的最佳条件。结果发现:浮选分离去除率随着混合物中初始Nd含量以及浮选次数的增加而增加。另外,对所有稀土元素与U3O8分别组成的二元体系混合物进行了浮选分离研究,发现在相同条件下,该体系对不同稀土元素的分离也不同,浮选分离的去除率与稀土氧化物的密度有一定的相关性。在此基础上,利用浮选机开展了工艺化的初步探索,发现该浮选体系对Nd的去除率可达80%以上。 相似文献
6.
传统干法后处理中常使用高温熔融盐溶解氧化铀,并通过电化学方法分离纯化。离子液体作为新型溶剂具有更低的熔点、更宽的电化学窗口和较好的溶解性,并且可进行设计修饰,在溶解氧化铀方面具有很好的应用前景。本文对离子液体体系溶解铀氧化物和铀的分离纯化进行了总结,并讨论了溶解体系的表征手段。 相似文献
7.
8.
Sr的分离在放射性资源的回收利用领域有着重要意义。离子液体萃取Sr的体系得到了极大的拓展,但是很难实现Sr、Cs之间的完全分离。放射性废液的问题也关系着离子液体体系在乏燃料后处理领域的应用。本工作研究了Sr在离子液体萃取体系中的界面宏观超分子组装,并开展了其在锶铯分离领域的应用基础研究。首先发现并研究了Sr^(2+)在离子液体萃取体系中界面上的宏观超分子组装(MSA)行为,可实现宏观超分子组装的离子液体为C_(n) OHmimNTf_(2)(n=2、3),萃取剂为正辛基苯基-N,N-二异丁基胺基甲酰基甲基氧化膦(CMPO)和N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)。通过质谱、核磁、红外、理论计算等方法分析了Sr宏观超分子组装体(Sr-MSA)的结构,提出了形成Sr-MSA过程的三级组装机理,即Sr^(2+)与CMPO配体形成配合物并与C_(2)OHmim^(+)发生阳离子交换,进入离子液体相;配合物通过相互间的静电吸引、氢键、疏水作用、长碳链等非共价作用形成纳米尺度组装体,并可生长至介观;介观组装体逐渐转移至界面并进一步生长至宏观尺度的中间体;多个宏观中间体在Marangoni效应产生的界面牵引作用下发生MSA,最终组装为单个Sr-MSA。最后,开发了Sr的选择性分离方法,成功实现了水溶液中Sr^(2+)的一步法选择性提取和固化。形成的Sr-MSA可用镊子夹出从而简单实现Sr^(2+)从水溶液中的选择性分离。该法在高酸度环境下仍可适用,在高酸度场景如乏燃料后处理中有潜在应用价值。 相似文献
9.
离子液体用于溶剂萃取铀酰离子的初步研究 总被引:2,自引:0,他引:2
初步研究了以咪唑类离子液体1-辛基-3-甲基咪唑六氟磷酸盐([C8mim][PF6])、1-丁基-3-甲基咪唑六氟磷酸盐([C4mim][PF6])和季胺类离子液体三辛基甲基氯化铵([N8881][Cl])为稀释剂,TBP为萃取剂,从硝酸介质中萃取铀酰离子。研究结果表明,铀的萃取分配比随水相初始硝酸浓度的增加而增加,季胺类离子液体略好于咪唑类离子液体,但都比对照稀释剂异辛烷差。研究了以碳酸胍为反萃剂的反萃条件。碳酸胍在实验条件下均能从这3种离子液体萃取体系中定量反萃铀酰离子,解决了用离子液体萃取铀酰离子中的反萃及离子液体的循环使用问题。 相似文献
10.
以XAD-7树脂为支撑担体制备了含有三种不同咪唑型离子液体([C_8mim][BF_4]、[C_8mim][PF_6]、[C_8mim][(SO_2CF_3)_2N])和萃取剂(苯并15-冠-5)的浸渍树脂,并用于锂同位素的萃取分离。浸渍树脂的红外和扫描电镜表征表明,离子液体成功负载到了树脂上;热重分析表明,该浸渍树脂具有良好的热稳定性。在水相初始pH=5.55时,浸渍树脂具有最佳萃取率。浸渍树脂在LiSCN溶液中具有较高的萃取率,而在CF_3COOLi溶液中呈现较大的单级分离因子,最大单级分离因子达到1.045±0.002。浸渍树脂的萃取平衡时间为2.5~3h。萃取热力学研究表明,该反应为自发过程,温度对体系的影响较小。~6Li富集于固相,~7Li富集在水相。该系列浸渍树脂易于再生,可循环使用。 相似文献
11.
液-液萃取体系中萃取剂和萃合物可能具有表面活性,从而形成多种超分子组装体如囊泡、胶束等。这些超分子组装过程通常均局限于微观或介观尺度,针对萃取体系界面的研究也主要集中在微观和介观尺度。最近,本课题组发现萃取体系界面形成宏观超分子组装(MSA)新现象。通过MSA体系可以从宏观尺度分析萃取过程的界面行为。MSA过程发生在离子液体萃取体系,为研究离子液体体系中复杂的超分子作用提供了新思路。本文主要围绕萃取过程中微观到宏观的不同尺度超分子组装行为进行评述。首先总结了萃取体系中的微观界面性质和离子交换行为。进一步地,对萃取体系中介观尺度的超分子组装进行了分析总结。最后,重点介绍了离子液体萃取体系界面上MSA过程的机理及其分离应用。一方面,该过程提供了新的萃取分离方法;另一方面,离子液体体系界面在MSA过程中呈现出持续的Marangoni效应,为MSA领域的一个重要科学问题即持续推动力问题的解决,提供了新的途径。 相似文献
12.
在核燃料的干法后处理中,高温熔融盐具有腐蚀性强、能耗大等缺点,而离子液体作为一种低温熔融有机盐,具有熔点低、离子电导率高、电化学窗口宽等优点,被用于回收核燃料中的锕系元素。介绍了离子液体组成、分类及特点,综述了锕系元素(钍、铀、镎、钚、镅)在第一代和第二代离子液体中的电化学行为,总结了离子液体中电沉积锕系元素存在的问题,并展望了该领域重点研究方向。 相似文献
13.
总结了近年来离子液体用于铀的水法及干法后处理相关的基础研究成果,主要内容包括铀在离子液体中的存在物种及电化学行为研究,归纳和分析了其中关键的科学问题。同时,基于当前的研究现状展望了离子液体在铀的净化分离方面的应用研究前景。 相似文献
14.
乏燃料后处理分离体系的辐射稳定性是其实际应用前需解决的重要问题。采用傅里叶变换红外光谱(FTIR)、超高效液相色谱/四级杆飞行时间质谱联用(UPLC/Q-TOF-MS)等方法系统研究了IB-BTP/[C2mim][NTf2]、CA-BTP/[C2mim][NTf2]和CA-BTPhen/[C2mim][NTf2]三种典型的氮杂多环芳烃/离子液体萃取分离体系的γ辐射效应,并通过Eu3+萃取实验对辐照前后体系的萃取性能变化进行了对比。结果表明:三种萃取剂在[C2mim][NTf2]离子液体中的辐射稳定性顺序为:CA-BTP>IB-BTP≈CA-BTPhen;三种体系的辐解产物主要为[C2mim][NTf2]离子液体辐解产生的·CF3、·[C2mim]+、·H等自由基进攻氮杂多环芳烃... 相似文献