首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Doping effects of Pt and Ru on Ni/Mg(Al)O catalysts were compared in daily start-up and shut-down operations of steam reforming of CH4. Trace Pt-doped catalyst showed better behavior than trace Ru-doped catalyst; the former was self-activated but the latter was not, although both exhibited self-regenerative activity. Moreover, the former exhibited sustainable activity, although the latter was quickly passivated, in the autothermal reforming of CH4. Formation of Pt–Ni alloy on the surface of fine Ni metal particles on the catalysts was suggested by EXAFS analyses. CH4 was dissociatively activated to form hydrogen on Pt, assisted by adsorbed O or OH species, leading to the self-activation via Ni reduction by hydrogen spillover from Pt. The self-regeneration of the Pt–Ni/Mg(Al)O catalysts can be achieved by the continuous rebirth of active Ni metal species via reversible reduction–oxidation between Ni0 and Ni2+ in/on Mg(Ni,Al)O periclase assisted by the hydrogen spillover.  相似文献   

2.
Co–ZSM-5 prepared via different methods with Co/Al ratios ranging from 0.03 to 0.83 are investigated in both the direct N2O decomposition and the selective catalytic reduction (SCR) of NO with CH4. UV–vis and H2-TPR are used to get an insight in the active species in these reactions. It is observed that in catalysts with low Co loadings (Co/Al < 0.3) Co is predominantly present as mono-atomic Co species, located at ion exchange positions in ZSM-5. Higher Co loadings result in the formation of different kinds of Co-oxides, which constitute the majority of species in the over-exchanged catalysts (Co/Al > 0.5). The mono-atomic species show the highest activity in the direct decomposition of N2O, whereas the oxidic Co species do not seem to contribute much to the overall decomposition. In the SCR, the Co-oxide species catalyze the combustion of CH4 whereas the selectivity towards NO reduction is much increased at low Co loadings. Therefore, over-exchange of Co–ZSM-5 does not seem to be favorable for both the direct N2O decomposition and the SCR of NO with CH4. Co/Al ratios <0.3 give the best results both in terms of conversion and activity per Co atom in both reactions.  相似文献   

3.
A series of Co–Mn–Al mixed oxides was prepared by a thermal treatment of coprecipitated layered double hydroxide precursors modified with different amount of potassium (0–3 wt.%) and tested in N2O catalytic decomposition. Chemical analysis, XRD, XPS, surface area measurements, SEM, and contact potential difference measurements were used for bulk and surface characterization of the catalysts. The Co–Mn–Al mixed oxide with 1.1–1.8 wt.% K exhibited the highest conversion of N2O and minimum value of the catalyst surface work function. Direct correlation between the work function values and the activity of the catalysts demonstrates that N2O decomposition over K-promoted Co–Mn–Al mixed oxides proceeds via the cationic redox mechanism and controlled modification of surface electronic properties provides the essential factor for catalyst optimization.  相似文献   

4.
Ni supported catalysts were prepared by the solid phase crystallization (spc) method starting from hydrotalcite (HT) anionic clay based on [Mg6Al2(OH)16CO3 2–]H2O as the precursor. The precursors were prepared by the co-precipitation method from nitrates of the metal components, and then thermally decomposed, in situ reduced to form Ni supported catalysts (spc-Ni/Mg–Al) and used for the CO2 reforming of CH4 to synthesis gas. Ni2+ can well replace the Mg2+ site in the hydrotalcite, resulting in the formation of highly dispersed Ni metal particles on spc-Ni/Mg–Al. The spc-catalyst thus prepared showed higher activity than those prepared by the conventional impregnation (imp) method such as Ni/-Al2O3 and Ni/MgO. When Ni was supported by impregnation of Mg–Al mixed oxide prepared from Mg–Al HT, the activity of imp-Ni/Mg–Al thus prepared was not so low as those of Ni/-Al2O3 and Ni/MgO but close to that of spc-Ni/Mg–Al. The relatively high activity of imp-Ni/Mg–Al may be due to the regeneration of the Mg–Al HT phase from the mixed oxide during the preparation, resulting in an occurring of the incorporation of Ni2+ in the Mg2+ site in the HT as seen in the spc-method. Such an effect may give rise to the formation of highly dispersed Ni metal species and afford high activity on the imp-Ni/Mg–Al.  相似文献   

5.
Reforming of CH4 with CO2 to produce syngas was studied over Ni0.03Mg0.97O solid solution catalyst and its bimetallic derivative catalysts which contained small amounts of Pt, Pd or Rh (the atomic ratio M/(Ni + Mg) was about 2 × 10–4, M = Pt, Pd or Rh). It was found that although the Ni0.03Mg{0.97}O catalyst showed an excellent stability and activity at the reaction temperature of 1123 K, it lost its activity completely within 51 h when the reaction temperature was as low as 773 K. However, both the activity and the stability at 773 K were improved significantly by adding Rh, Pt, or Pd. This synergistic effect is rationally explained by the promoted reducibility of Ni. On all these catalysts, the amount of deposited carbon during the reaction was very low, suggesting that carbon deposition was not the main cause of the deactivation. Also, the catalytic activity of bimetallic catalysts increased gradually with the noble metal loading, but after passing through a maximum, it decreased with superfluous addition. The maximum was found to be located at around the atomic ratio of M/(Ni + Mg) 0.02% (M = Pt, Pd and Rh). This phenomenon could most probably be attributed to the different composition of Pt-Ni alloy particles formed after the reduction.  相似文献   

6.
Double bond migration of eugenol to isoeugenol was carried out over as-synthesized hydrotalcites and their modified forms. The catalysts of general formula M(II)M(III)-xHT with carbonate as interlayer anion were synthesized by a co-precipitation method where M(II)=Mg, Ni, Co, Zn, Cu and M(III)=Al, Cr, Fe, La, V with varying M(II)/M(III) atomic compositions (here represented as ‘x’). The synthesized catalysts were tested for the reaction. Among various binary hydrotalcites investigated, Mg and Ni offered maximum activity, wherein MgAl-4HT showed nearly 73% conversion and NiAl-4HT showed 75% conversion with 15:85 cis:trans ratio at 200 °C with a substrate:catalyst mass ratio of 2:1. The other binary systems showed poor activity (less than 5%) under similar reaction conditions. The preservation of HT-like lattice is presumed to be crucial for this reaction, as evidenced from “in situ” powder X-ray diffraction (PXRD) and thermogravimetric (TG) analysis measurements. Variation in the trivalent metal ions indicated a maximum activity for Al, followed by Fe and Cr, in accordance with the crystallinity. A co-operative phenomenon was noted when both Mg and Ni were present together in a ternary MgNiAl-HT, however the activity varied with Mg/Ni atomic composition. Solvent variation studies indicated that more polar solvents favored the reaction. Significant promotional influence in the activity was noted with alkali and ruthenium impregnation on MgAl-4HT, wherein maximum activity was showed by catalysts modified with Cs (among the alkali metal ions studied) and higher content of ruthenium. Comparison of the activity with conventional bases such as KOH and KOBut revealed a superior performance of HT-based catalysts, although conventional bases had been used under stoichiometrically excess conditions (around 9% conversion for KOH with 1:10 and 5% conversion for KOBut with 1:3 substrate:catalyst mole ratio). The good performances of these catalysts encouraged further studies. A reaction mechanism involving the hydroxyl group of HT-like lattice is proposed for this isomerization reaction.  相似文献   

7.
The process of selective catalytic reduction of nitrogen oxides by propane in the presence of O2, as well as in the presence or absence of CO, was studied over series of commercial oxide catalysts used in petrochemical processes. For the first time synergistic effect was observed for catalytic systems consisting of mechanical mixtures of Cu–Zn–Ni–Al (catalyst I) + Fe–Cr (catalyst II) and Cu–Zn–Ni–Al (catalyst I) + Ni–Cr (catalyst III). The activity of these mixtures in nitrogen oxides reduction by propane was greater than that of individual components in each case. The worked-out catalytical systems showed high effectivity in the process of simultaneous removal of several toxic components: NO x , CO, hydrocarbons – from model gas mixtures, as well as from real exhausts of automotive transport.  相似文献   

8.
Effects of Ru addition on the activity and the sustainability of Ni/Mg(Al)O catalysts were investigated in the daily start-up and shut-down (DSS) operation of the steam reforming of CH4. Mg2.5(Ni0.5)–Al hydrotalcite was prepared by coprecipitation and calcined to form Mg2.5(Al,Ni0.5)O periclase. When the powders of the periclase were dipped in an aqueous solution of Ru(III) nitrate, the hydrotalcite was reconstituted on the surface of Mg2.5(Al,Ni0.5)O particles, resulting in the formation of highly dispersed Ru/Ni bimetal supported catalysts after the calcination, followed by the reduction. The addition of Ru on Ni caused a decrease in the reduction temperature of Ni and an increase in the amount of H2 uptake on the Ni over the catalyst. Formation of Ru–Ni alloy or strong interaction between Ru and Ni was also suggested. When Ru–Ni0.5/Mg2.5(Al)O catalysts were tested in the DSS-like operation under steam purging, the deactivation due to the oxidation of Ni metal by steam was effectively suppressed by hydrogen spillover. Moreover, only 0.05 wt% of Ru loading was enough to effectively suppress the deactivation during the DSS-like operation.  相似文献   

9.
The N2O catalytic reduction by carbon monoxide over Co–Mn–Al calcined hydrotalcite was studied. The effect of oxygen and that of CO/N2O molar ratio on the rate of N2O decomposition was examined. CO strongly enhanced N2O conversion when O2 was absent in the feed gas. In the presence of oxygen, carbon monoxide acts as a non-selective reductant thereby inhibiting N2O destruction. Continuing excess of CO over N2O without presence of O2 led to a very slow reduction of the catalyst, which caused noticeable N2O conversion decrease with progressing catalyst reduction. The simultaneous reduction of N2O by CO and direct N2O decomposition took place when CO was limiting reactant (CO/N2O < 1) but only at temperatures, at which the direct decomposition is possible without presence of reductant. Simple reduction was observed when reactants ratio was CO/N2O ≥ 1.  相似文献   

10.
A series of Cs promoted NiO catalysts have been prepared and tested for direct decomposition of N2O. These catalysts are characterized by BET surface area, X-ray diffraction (XRD), temperature programmed reduction (TPR), temperature programmed desorption of N2O (TPD-N2O) and X-ray photo electron spectroscopy (XPS). The Cs promoted NiO catalysts exhibit higher activity for the decomposition of N2O compared to bulk NiO. The catalyst with Cs/Ni ratio of 0.1 showed highest activity. The enhancement in catalytic activity of the Cs promoted catalysts is attributed to the change in the electronic properties of NiO. The characterization techniques suggest weakening of Ni–O bond thereby the desorption of oxygen becomes more facile during the reaction. The Cs promoted NiO catalyst is effective at low reaction temperature and also in the presence of oxygen and steam in the feed stream. IICT Communication No: 070523.  相似文献   

11.
(CaO)1–x (ZnO) x mixed oxides (x=0–1), heated at 1423 K under atmospheric conditions, were checked for their catalytic activity in the N2O decomposition in the temperature range of 450–650°C. Although the catalytic activity was measured in the dark, it was found to be linearly related with the photoluminescence intensity of the catalysts.  相似文献   

12.
Ni–Mo and Ni–W sulfide catalysts with atomic ratio R = 0.5 (Ni/(Ni + M), with M = Mo or W) prepared by decomposition of Ni-impregnated thiometallates were evaluated in the reaction of thiophene hydrodesulfurization. Catalysts derived from impregnated thiometallates (DTI samples) presented improved catalytic activity and higher synergistic effect than catalysts prepared by co-precipitation (HSP samples) despite the fact that co-precipitated catalysts showed larger surface area. Structure characterization by high-resolution electron microscopy (HREM) and X-ray diffraction (XRD) revealed different crystalline phases in DTI and HSP catalysts. A mixture of phases (MS2, NiS1.03 and MO2) was observed in catalysts obtained by co-precipitation. Only the poorly crystalline MS2 phase was observed in DTI catalysts suggesting that the Ni promoter is very well dispersed on the chalcogenide structure.  相似文献   

13.
N2O decomposition was investigated over a series of K-promoted Co-Al catalysts. The activity tests showed that doping with K greatly enhanced the catalytic activity of the Co-Al catalyst, and the enhancement was critically dependent on the amount of K and the calcination temperature. When the catalyst had a K/Co atomic ratio of 0.04 and was calcined at 700–800 °C, a full N2O conversion could be reached at a reaction temperature of 300 °C. Moreover, even under the simultaneous presence of 4% O2 and 2.6% water vapor, such high-temperature treated K/Co-Al catalyst exhibited high reactivity and stability, with the N2O conversion remaining at a constant value of 92% over 40 h run at 360 °C. In contrast, non-doped Co-Al catalyst showed a severe activity loss under such reaction conditions. A combination of characterization techniques was employed to reveal the promoting role of K and the effect of calcination temperature. The results suggest that doping with K increases the electron density of Co and weakens the Co–O bond, thus promoting the activation of N2O on the Co sites and facilitating the desorption of oxygen from the catalyst surface. High-temperature calcinations made the desorption of O2 proceed more readily.  相似文献   

14.
The electrochemical behaviour of nickel in 0.5 M K2CO3 is investigated by applying simple and combined potentiodynamic techniques in the potential regions of the Ni(OH)2/Ni and Ni(III)/Ni(II) redox couples. The diffusion controlled hydrated NiCO3 precipitation interferes with the electroformation of the Ni(OH)2 prepassive layer. Both anodic and cathodic peak multiplicities are observed in the potential range of the Ni(III)/Ni(II) electrode. The presence of CO 3 2– ions is tentatively associated with a change in the hydration of the composite Ni(OH)2/NiOOH layer and eventually with HCOc ions coming out from the CO 3 2– /HCO 3 equilibrium, which depends on the local change in pH produced during the corresponding anodic and cathodic reactions.  相似文献   

15.
The activity and stability of Au/Fe2O3–MOx catalysts (M = Zr, Mg, Ca, Ni, La, Cu, Zn, Al, Ba, Cr, Co, Ce, Mo, Bi, Ti, Mn) in water-gas shift reaction were investigated extensively. The WGS activity and stability of Au/Fe2O3 is improved significantly upon addition of ZrO2 and to a lesser extend MgO, CaO, NiO, La2O3, Cr2O3, CuO. In contrast, Bi, Ti and Mn oxides seriously decrease the catalytic activity while additions of Zn, Al, Ba, Co, Ce and Mo oxides do not influence evidently the catalytic activity and its stability. Based on the characterization using the methods of BET-surface area and pore structure XRF, XRD, and H2–TPR for some of as-prepared and spent samples, it could be concluded that the catalytic activity of gold catalysts supported on composite oxide of Fe2O3–MOx depends not only on the dispersion of the gold particles but also on the reduction property of composite oxide supports, regardless of the fluctuation of gold loading and some change of specific surface area and pore structure due to introduction of the modifying metal oxides. The improvement of catalytic stability may be attributed to the comparative stabilization of high dispersion of gold particles and uneasily sintering of Fe3O4 crystallites during the catalytic operation. However, the chemical (electronic) effects exerted by the modifying addition of metal oxides on the catalytic performance of gold catalyst may not be ruled out.  相似文献   

16.
The current research investigated N2O decompositions over the catalysts Ir/Fe-USY, Fe-USY and Ir-USY under various conditions, and found that a trace amount of iridium (0.1 wt%) incorporated into Fe-USY significantly enhanced N2O decomposition activity. The decomposition of N2O over this catalyst (Ir/Fe-USY-0.1%) was also partly assisted by NO present in the gas mixture, in contrast to the negative effect of NO over noble metal catalysts. Moreover, Ir/Fe-USY-0.1% can decompose more than 90% at 400 °C (i.e. the normal exhaust temperature) under simulated conditions of a typical nitric acid plant, e.g. 5000 ppm N2O, 5% O2, 700 ppm NO and 2% H2O in balance He, and such an activity can be kept for over 110 h under these strict conditions. The excellent properties of bimetallic Ir/Fe-USY-0.1% catalyst are presumably related to the good dispersion of Fe and Ir on the zeolite framework, the formation of framework Al–O–Fe species and the electronic synergy between the Ir and Fe sites. The reaction mechanism for N2O decomposition has been further discussed on the temperature-programmed desorption profiles of O2, N2 and NO2.  相似文献   

17.
Iron catalysts doped with Al2O3, CaO were obtained by melting iron oxide with 2.2 wt.% of Al2O3, 2.1 wt.% of CaO. The reduced catalyst was impregnated with lithium hydroxide water solution. Activity measurements were carried out in the laboratory installation in the temperature range 623–773 K under the pressure of 10 MPa. The activity of catalyst containing 0.79 wt.% of Li2O and reduced at 773 K was similar to the activity of an industrial iron catalyst doped with potassium oxide. After reduction at 923 K the catalyst containing 0.48 wt.% of Li2O was about 15% more active than the industrial catalyst. Increasing Li2O concentration results in the decrease of the surface area of a catalyst reduced at 923 K. The most active catalysts doped with lithium oxide were more active than the industrial catalyst when their activity was calculated and scaled down to surface area units.  相似文献   

18.
The partial hydrogenation of propyne was studied over copper-based catalysts derived from Cu–Al hydrotalcite and malachite precursors and compared with supported systems (Cu/Al2O3 and Cu/SiO2). The as-synthesized samples and the materials derived from calcination and reduction were characterized by XRF, XRD, TGA, TEM, N2 adsorption, H2-TPR, XPS, and N2O pulse chemisorption. Catalytic tests were carried out in a continuous flow-reactor at ambient pressure and 423–523 K using H2:C3H4 ratios of 1–12 and were complemented by operando DRIFTS experiments. The propyne conversion and propene selectivity correlated with the copper dispersion, which varied with the type of precursor or support and the calcination and reduction temperatures. The highest exposed copper surface was attained on hydrotalcite-derived catalysts, which displayed C3H6 selectivity up to 80% at full C3H4 conversion and stable performance in long-run tests at T ? 473 K. Both activated Cu–Al hydrotalcites (this work) and Ni–Al hydrotalcites [S. Abelló, D. Verboekend, B. Bridier, J. Pérez-Ramírez, J. Catal. 259 (2008) 85] exhibited a relatively high alkene selectivity under optimal operation conditions, but they present a markedly distinctive catalytic behavior with respect to temperature and hydrogen-to-alkyne ratio. The product distribution was assigned through Density Functional Theory (DFT) simulations to the different stability of subsurface phases (carbides, hydrides) and the energies and barriers for the competing reaction mechanisms. The behavior of Cu in partial alkyne hydrogenation resembles that of Au nanoparticles, while Ni is closer to Pd.  相似文献   

19.
Catalytic conversions of diethylsilane (E2), triethylsilane (E3) and diethyldimethylsilane (E2M2) were examined at 373–573 K in a closed recirculation reactor by using various solid acid and base catalysts. Basically two types of reaction were found: decomposition and disproportionation. Strongly acidic catalysts such as silica-alumina (SA), alumina and sulfated ZrO2 (SO3/ZrO2) exhibited high disproportionation activity, while weakly acidic and basic catalysts showed low catalytic activity and gave mainly cracking products. The order of disproportionation reactivity of three silanes tested were E2M2 > E3 > E2 over SA and SO3/ZrO2, while it was E2E3 > E2M2 over an alumina catalyst.  相似文献   

20.
Transition metal (Cr, Cu, Fe, Co and Ni) oxides supported on -alumina were characterized with respect to their textural parameters and reducibility and used as catalysts in decomposition of nitrous oxide and ethylbenzene (EB) dehydrogenation as well as coupling of both processes. High activity of -Al2O3 in N2O decomposition coupled with EB dehydrogenation has been found. An increase in EB and N2O conversion was observed when transition-metal-containing catalysts were used. The activity of catalysts depended on their reducibility. Maximum N2O efficiency was observed for the Cr/-Al2O3 sample, whereas -Al2O3-supported Cu and Fe oxide systems showed about 50% efficiency of N2O in the reaction. An influence of the molar ratio of N2O/EB on activity and selectivity of the catalysts was found. An excess of N2O resulted in an increase in CO2 formation at nearly constant styrene yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号