首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
To investigate the effect of reoxidation on the grain-boundary acceptor-state density of reduced barium titanate, n -doped BaTiO3 ceramics are sintered in a reducing atmosphere (2% H2+ 98% N2) and then annealed in oxygen. After annealing at 1150°C for different times, the experimental results show a relationship between temperature-averaged acceptor-state density and annealing time as N s= N so Bt 1/n with n between 2 and 3. An inherent acceptorstate density N so= 4.25 × 1012 cm−2 is obtained with an increase rate B = 4.8 × 1012 cm−2. min−1/3, when n reaches 3. The inherent grain-boundary acceptor states in the reduced n -doped BaTiO3 ceramics are believed not due to adsorbed oxygen ions.  相似文献   

2.
Nanograined BaTiO3 ceramics prepared from 40-nm-size BaTiO3 nanopowders exhibited the cubic as well as the tetragonal phase, while nanograined BaTiO3 ceramics prepared from BaTiO3 nanopowders coated with Mn had only the tetragonal phase. The dielectric constant of the latter was 10 times larger than that of the former; the latter exhibited PTCR behavior with a resistivity jump ratio of about 5.0 × 104. These physical properties of the BaTiO3 ceramics appeared to be significantly affected by the strain near grain boundaries; such strain resulted in a phase transition from the cubic to the tetragonal phase in the nanograined BaTiO3 ceramics, even though the grain size was about 40 nm.  相似文献   

3.
Ehdectrical resistivity and Hall voltage were measured between 4.2 and 300 K on T12O3 crystals annealehd at 550°C for 24 h under oxygen pressures of 2×104 to 107 Pa. The carrier concentration varied from 7.97×1020 to 5.08×1020 cm−3, the low-temperature Hall mobility from 131 to 189 cm2/V.s, and the Fermi level from 7.1×104 to 5.05×104 J/mol above the bottom of the conduction band as P 02 was increased from 2×104 to 107 Pa. The dependence of Fermi level on carrier concentration and P 0l was consistent with a parabolic density-of-states function describing the conduction band. Over the entire region of oxygen pressure investigated, Fermi-Dirac statistics were required to describe the dependence of carrier concentration on P 02.  相似文献   

4.
The density of neodymium-doped calcium aluminate (<1 mol% Nd2O3·50% CaO·50% Al2O3) liquid was measured over a wide temperature range using an electrostatic levitation furnace. The density was obtained using an UV-based imaging technique that allowed excellent illumination throughout all phases of processing, including elevated temperatures. Over the 1560–2000 K temperature range, the density could be expressed as ρ( T ) = 2.83 × 103– 0.21( T – T m) (kg·m−3) (±2%) with T m= 1878 K, which yielded a volume coefficient of thermal expansion α( T ) = 7.5 × 10−5 K−1.  相似文献   

5.
Gold-dispersed BaTiO, thin films were prepared by the rf magnetron sputtering method. The atomic ratio of Ba to Ti in the films was varied and the effects on the linear and nonlinear optical properties were investigated. As the atomic ratio increased, the value of χ(3)532 for the gold-dispersed BaTiO3 thin films slightly increased. It was found that the increase in the value of χ(3)532 is due mainly to a change in the crystalline state of the BaTiO3 matrix. However, it was also found that the atomic ratio had a smaller effect on the value of χ(3)532 than did the refractive index of the matrix.  相似文献   

6.
A high, temperature-stable dielectric constant (∼1000 from 0° to 300°C) coupled with a high electrical resistivity (∼1012Ω·cm at 250°C) make 0.7 BaTiO3–0.3 BiScO3 ceramics an attractive candidate for high-energy density capacitors operating at elevated temperatures. Single dielectric layer capacitors were prepared to confirm the feasibility of BaTiO3–BiScO3 for this application. It was found that an energy density of about 6.1 J/cm3 at a field of 73 kV/mm could be achieved at room temperature, which is superior to typical commercial X7R capacitors. Moreover, the high-energy density values were retained to 300°C. This suggests that BaTiO3–BiScO3 ceramics have some advantages compared with conventional capacitor materials for high-temperature energy storage, and with further improvements in microstructure and composition, could provide realistic solutions for power electronic capacitors.  相似文献   

7.
BaTiO3 powder doped with La donor and codoped with Mn or Mg acceptor was sintered at 1350°C/1 h in air. For Ladoped BaTiO3, the room-temperature resistivity decreased to a minimum at [La3+] ∼ 0.15 mol%. For La-Mn-codoped BaTiO3, the minimum resistivity occurred at [La3+] - 2[Mn2+] ∼ 0.15 mol%. When the ceramic was changed to a fine-grained insulator by high donor doping ([La3+] >0.15 mol%), its semiconductivity was restored, and the relatively homogeneous, coarse-grained microstructure recurred by codoping with either Mg or Mn acceptor, with the transition at [La3+] - 2[Mg2+] = 0.15 mol% or [La3+] - 2[Mn2+] = 0.15 mol%. The analogy of a compensation effect between La-Mn- and La-Mg-codoped BaTiO3 suggested that Mn acceptor added to BaTiO3 exists as Mn2+ ion in the bulk grain region; its influence on the positive temperature coefficient of resistivity behavior is then discussed.  相似文献   

8.
Ternary compounds in the system BaO—TiO2—La2O3 were prepared by the solid-state reaction technique at temperatures between 1300° and 1400°C using precursor oxides as the starting materials. In an alternative processing technique, BaTiO3 was reacted with appropriate proportions of prefabricated lanthanum titanates at 1350°C to obtain the compounds. Two compounds were identified in the TiO2-rich region of the system. The X-ray powder diffraction pattern of a compound with a chemical composition BaLa2Ti3O10 (BaO·La2O3·3TiO2) is indexed on the basis of an orthorhombic unit cell with a = 7.665 × 10−1 nm, b = 28.524 × 10−1 nm, and c = 3.876 × 10−1 nm. The other compound, which has a chemical composition Ba4La8Ti17O50 (BaO·La2O3·4.25TiO2) occurs in a narrow homogeneity range within the system. The X-ray powder diffraction pattern of the compound is indexed on the basis of an orthorhombic unit cell with a = 12.317 × 10−1 nm, b = 22.394 × 10−1 nm, and c = 3.881 × 10−1 nm. Both the compounds are compatible with BaTiO3 and form pseudobinary joins with BaTiO3 in the system BaO—TiO2—La2O3.  相似文献   

9.
The deviation from stoichiometry, δ, in Cr2−δO3 was measured by a tensivolumetric method in the high pO2 range of ≊104 to 104 Pa at 1100°C. The value of δ, or chromium vacancy concentration, was≊9×10−5 mol/mol Cr2O3 in air for Cr2O3 with 99.999% purity. The chemical diffusion coefficient, DT, determined from equilibration data was ≊4.6× cm2·s−1 at 1100°C for pO2= 2.2 ×101 Pa. The self-diffusion coefficient of Cr ions was calculated from and δ and found to be≊1.6×10-17 cm2-s−1, in good agreement with recently measured values.  相似文献   

10.
An investigation of the properties of high-purity (>99 wt%) tantalum tungstates (Ta22W4O67, Ta, WO8, and Ta16W18O94) included determination of density (bulk and theoretical), refined lattice constants, maximum use temperatures, micro-hardness, heat capacity, thermal expansion (contraction) and diffusivity, calculated thermal conductivity, and electrical resistivity. Usable to ∼ 1700 K in air or inert atmospheres, these tantalum tungstates have theoretical densities of 7.3 to 8.5 g/cm3, are relatively soft (120 to 655 kg/mm2 hardnesses), and are electrical insulators (6× 103 to 2× 108Ω.cm resistivities). The distinguishing properties of the materials are their thermal expansion (average CTE values from + 0.6×10−8/K to −5.1× 10−6/K at 293 to 1273 K), thermal expansion hysteresis with minimal observable microcracking, and thermal diffusivity  相似文献   

11.
Open-circuit emf and ac conductivity studies were conducted on two batches of dense polycrystalline ThO2. The open-circuit emf data were used to delineate the low- p o2 ionic domain boundary for "pure" ThO2, which is presented as a log Pθ line on a log Po2-1/ T diagram. In addition the ionic conductivity, σion, and the high-Po2 log Pθ boundary were also determined, mainly from ac conductivity measurements, which also confirmed the Po2I/4 dependence of σp, the p-type electronic conductivity, shown by other investigators. The main results are, for the first batch, log Pθ= 12.7−220.2 × 103/4.575T, log σion= 1.9−44.3×103/4.575T, and log Pθ=−1.0−31.4 × 103/4.575T; for the second batch, log Pθ=11.2−219.7 × 103/4.575T, log σion= 1.7−41.6 × 103/4.575T, and log Pθ=0.6−40.4 × 103/4.575T. The oxygen permeability of ThO2 tubes and the oxidation rate constant of Th were predicted from the conductivity and emf data and compared with direct measurements previously reported. The calculated and previously measured permeabilities agreed very well; however, the correlation between the predicted and previously measured oxidation kinetics was somewhat less satisfactory.  相似文献   

12.
The knowledge of the steady-state stress for plastic deformation as a function of temperature and strain rate is essential for hot-forming superconducting material into commercially useful shapes. In this paper, results are presented on the experimental determination of the rheology of fully dense polycrystalline Y1Ba2Cu3O7−x superconducting material at temperatures ranging from 750° to 950°C and strain rates of 10−4, 10−5, and 10−6 s−1. The data are best fitted by a power law: ε(s−1)=8.9 × 10−17. (s−1) σ2.5 (Pa) exp [−2.01 × 105(J·mol−1)|RT]. X-ray analysis shows that the superconducting material retains its phase composition after nearly 70% total strain of the sample. A strong anisotropy in the resistivity of the deformed samples is observed because of the development of a preferred orientation of the a or b axis of Y1Ba2Cu3O7−x orthorhombic perovskite single crystals perpendicular to the principal maximum compressive stress.  相似文献   

13.
Spherical fine (micrometer and submicrometer in size) homogeneous BaTiO3 powders were synthesized from ethanol: water solutions of BaCl2 and TiCl4 using the spray-pyrolysis technique. Two different atomizers—twin-fluid and ultrasonic, with a resonant frequency of 2.5 × 106 Hz—were used for mist generation. Hollow spherical particles containing a certain amount of unreacted BaCl2 phase and having a mean particle diameter of 2.5 μm were obtained at 1173 K using a twin-fluid atomizing system. Decomposition of precursors and their transition to the cubic BaTiO3 phase occurred, even at 973 K in the case of the ultrasonic atomizing system. For the initial droplet size of 2.2 μm and residence time of ∼60 s, spherical BaTiO3 particles with the mean particle diameter of 0.53 μm were obtained. A BaTiO3 formation mechanism has been proposed as a reaction between TiO2 and BaCl2 rather than a reaction of oxides.  相似文献   

14.
In this work, a bulk Nb4AlC3 ceramic was prepared by an in situ reaction/hot pressing method using Nb, Al, and C as the starting materials. The reaction path, microstructure, physical, and mechanical properties of Nb4AlC3 were systematically investigated. The thermal expansion coefficient was determined as 7.2 × 10−6 K−1 in the temperature range of 200°–1100°C. The thermal conductivity of Nb4AlC3 increased from 13.5 W·(m·K)−1 at room temperature to 21.2 W·(m·K)−1 at 1227°C, and the electrical conductivity decreased from 3.35 × 106 to 1.13 × 106Ω−1·m−1 in a temperature range of 5–300 K. Nb4AlC3 possessed a low hardness of 2.6 GPa, high flexural strength of 346 MPa, and high fracture toughness of 7.1 MPa·m1/2. Most significantly, Nb4AlC3 could retain high modulus and strength up to very high temperatures. The Young's modulus at 1580°C was 241 GPa (79% of that at room temperature), and the flexural strength could retain the ambient strength value without any degradation up to the maximum measured temperature of 1400°C.  相似文献   

15.
Compensation Effect in Semiconducting Barium Titanate   总被引:1,自引:0,他引:1  
Donor-doped, stoichiometric BaTiO3 sintered at 1350°C for 1 h exhibits a maximum room-temperature conductivity at [La3+]∼0.15 mol%. Elements of lower valence than Ba2+ or Ti4+, when incorporated into semiconducting BaTiO3, are regarded as poisoning impurities, i.e., acceptors. They tend to increase the room-temperature resistivity of the semiconducting BaTiO3. For insulating BaTiO3 resulting from high Mg2+ acceptor doping levels, the semiconductivity can be restored by introducing higher La3+ donor-dopant concentrations. This behavior is interpreted as a compensation effect based on the defect chemistry of the acceptor- and donor-doped BaTiO3.  相似文献   

16.
Measurements have been made of the effective thermal conductivity of a packed bed of hollow, yttria-stabilized zirconia microspheres, under vacuum and under 100 kPa of argon gas. Above 1400 K the spheres begin to sinter together. Before this occurs, the conductivity is given under vacuum by A 1 T 3+ A 2 with A 1= 2 × 10−11 W · m−1· K−4 and A 2= 0.01 W · m−1· K−1. The thermal conductivity increases strongly with both the gas pressure and the degree of sintering of the spheres. The measured values can be fitted reasonably well by a model developed by Takegoshi et al. These results may have some applicability to the development of high-temperature thermal insulation.  相似文献   

17.
The chemical and electrical features of the grain boundaries in polycrystalline SrTi0.99Nb0.01O3 (ST) and BaTiO3 (BT) ceramics, which were synthesized by hot-press sintering Na- and Mn-coated semiconducting ST and BT powders, respectively, were investigated. Because of the excess negative electric charges formed near grain boundaries, electrostatic potential barriers were formed near the grain boundaries. The electrical features of the grain boundaries in ceramics are very sensitive to the amount of the coating material. When the amount of the coating material was increased from 0 to 5 wt%, the threshold voltage of the ST ceramics and the resistivity jump ratio of the BT ceramics increased from 0.7 to 81.0 V/cm and from 1.0 to 2.0 × 103, respectively. The electrical features of the grain boundaries are related to their chemical characteristics.  相似文献   

18.
Dense BaTiO3 ceramics consisting of submicrometer grains were prepared using the spark plasma sintering (SPS) method. Hydrothermally prepared BaTiO3 (0.1 and 0.5 µm) was used as starting powders. The powders were densified to more than similar/congruent95% of the theoretical X-ray density by the SPS process. The average grain size of the SPS pellets was less than similar/congruent1 µm, even by sintering at 1000-1200°C, because of the short sintering period (5 min). Cubic-phase BaTiO3 coexisted with tetragonal BaTiO3 at room temperature in the SPS pellets, even when well-defined tetragonal-phase BaTiO3 powder was sintered at 1100° and 1200°C and annealed at 1000°C, signifying that the SPS process is effective for stabilizing metastable cubic phase. The measured permittivity was similar/congruent7000 at 1 kHz at room temperature for samples sintered at 1100°C and showed almost no dependence on frequency within similar/congruent100-106 Hz; the permittivity at 1 MHz was 95% of that at 1 kHz.  相似文献   

19.
Using an ordinary ceramic processing technique, a new method of preparing porous BaTiO3, PTC thermistors is introduced. Adding proper graphite powders into calcined BaTiO3, powder can increase porosity and enhance the PTC effect of the sintered sample. When the graphite addition is about 1.0 wt%, the resisivity of samples from low-purity raw materials decreases to 20 Σ·cm at room temperature, while the PTC resistivity ratio is over 105 and 1–2 orders higher than that of samples without the porosifier. The porosifier has increased the reproducibility of resistivity from 60% up to 90%. In addition, the porous thermistor has a fast response to overcurrent and shows some improvement in heat resistance. With the aid of the Heywang model and the Kuwabara conclusion, the influence of graphite on grain surfaces is discussed. The experimental results show that this method is a useful technique to prepare good PTC thermistors from low-purity raw materials.  相似文献   

20.
The equilibrium electrical conductivity of polycrystalline, calcium-doped BaTiO3 was studied over the oxygen partial pressure range 10-13 to 105 Pa and the temperature range 800° to 1000°C. There is little effect if CaO is substituted for a corresponding amount of BaO, i.e., Ba, 1-xCaxTiO3. If CaO is substituted for a corresponding amount of the TiO2 content, i.e., BaTi1-xCaxO3-x, the equilibrium conductivity shows strong evidence of acceptor-doped behavior. If the corresponding amount of excess CaO is added to stoichiometric BaTiO3, i.e., BaCaxTiO3+x, the conductivity profiles are very close to those for samples with TiO2 replaced by CaO, and show highly acceptor-doped behavior. This is in agreement with the replacement of a small amount of Ti by Ca2+ on the octahedral B-sites of BaTiO3, where it acts as an acceptor center, CaT  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号