首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以挤压态AZ31镁合金棒材为原材料,在室温下沿着∥ED和⊥ED的方向进行预变形实验,模拟二辊皮尔格冷轧过程中减壁段横截面瞬时变形应力状态,接着对预变形试样取样进行二次压缩,利用电子背散射衍射(EBSD)对2次变形之后的微观结构进行表征。研究了应变路径变化情况下组织和织构对力学行为的影响。结果表明,预变形使AZ31镁合金的屈服强度提高,其主要原因是预变形产生的拉伸孪晶导致晶粒细化和位错密度增加。并且孪晶的出现会改变晶粒的取向,基面织构弱化(或孪生织构增强)在改善AZ31镁合金力学性能方面可能起到更重要的作用。∥ED-3%和⊥ED-3%试样的屈服强度分别提高了66.7%和6.6%。  相似文献   

2.
采用挤压铸造后直接二次重熔的方法制备半固态AZ61镁合金。首先通过挤压铸造预成形铸态AZ61镁合金,以获得细小的枝晶;然后在半固态区间进行二次重熔,细小的枝晶演变成球状晶,完全球化的晶粒被液相均匀包裹。研究结果表明:通过挤压铸造预成形的铸态AZ61镁合金与传统铸造预成形的铸态AZ61镁合金相比,在相同的二次重熔条件下,挤压铸造预成形的铸态AZ61镁合金获得更细小的半固态组织。此外,挤压铸造加上二次重熔触变成形的AZ61镁合金,力学性能优于传统铸造后二次重熔触变成形的AZ61镁合金。  相似文献   

3.
用光学显微镜、X射线衍射仪以及电子万能试验机,研究了正挤压-扭转剪切变形对AZ31、AZ61和AZ80镁合金组织和力学性能的影响。结果表明,经正挤压-扭转剪切变形后,镁合金发生了显著的晶粒细化和基面织构弱化,其中:AZ61镁合金发生了充分的动态再结晶,可将晶粒尺寸显著细化至3 μm,随挤压温度的升高,晶粒有所长大,基面织构受位错脱钉作用而进一步弱化。AZ31镁合金在挤压温度为250℃时获得优良的力学性能,其压缩率和抗压强度分别高达29.2%和395 MPa  相似文献   

4.
文章研究了电磁连铸AZ31镁合金经热挤压变形后的微观组织和力学性能。结果表明,挤压过程中的动态再结晶能够显著细化晶粒,局部细晶区的平均晶粒为2μm。与铸态合金相比,挤压后的AZ31镁合金具有更细小的晶粒和更均匀的微观组织。挤压变形后产生强烈的基面织构;挤压后材料的力学性能显著提高。屈服强度、抗拉强度和断面收缩率随着挤压比的增大而增大。挤压比为25时,屈服强度、抗拉强度和断面收缩率分别为259MPa,357MPa和30.5%,比铸态合金分别提高了86.33%,64.52%和67.40%。随着挤压比的增大,晶粒细化效果更为明显,微观组织更均匀。断口形貌分析表明,挤压变形后材料由韧脆混合型断裂,转变为韧性断裂。  相似文献   

5.
等通道角挤压变形AZ31镁合金的变形行为   总被引:6,自引:2,他引:4  
研究挤压态和等通道角挤压(EcAE)态AZ31镁合金的变形行为与微观组织的相关性.结果表明,ECAE态AZ31镁合金的室温拉伸屈服强度与晶粒尺寸之间表现出反Hall-Petch关系,且拉压不对称性明显减弱;在室温压缩时表现出应变速率敏感性,并随变形温度升高,应变速率敏感性因子变大.挤压态合金的晶粒度为20 μm,具有典型的挤压丝织构,主要变形方式为基面位错滑移和孪生,导致了合金中明显的拉压不对称性.ECAE态合金平均品粒尺寸约为2μm,织构相对随机化,导致合金压缩时孪生比率明显下降,其他变形模式比率增加,提高了变形抗力,降低了拉压不对称性.ECAE态AZ31镁合金压缩的激活能接近其晶界扩散激活能,晶界滑移在一定程度上导致了合金的反Hall-Peteh关系的出现以及应变速率敏感性的增强.  相似文献   

6.
AZ31镁合金不同温度挤压后组织性能研究   总被引:7,自引:1,他引:6  
研究不同模具温度挤压变形对细晶AZ31镁合金力学性能和织构演变的影响.结果表明,挤压变形显著地细化AZ31镁合金的晶粒,大幅度地提高了材料的抗拉强度和屈服强度,而材料的延伸率变化不大.室温挤压时,材料的抗拉强度和屈服强度分别为322和233 MPa,延伸率为21%.随着模具温度的升高,变形后材料组织中的大角度晶界所占的比例逐渐变大,表明挤压过程中的动态再结晶越来越充分.挤压变形后,形成{0002}基面环形织构,织构强度较原始状态显著减弱.通过综合分析材料的力学性能以及织构分布,发现AZ31镁合金的力学性能取决于材料的晶粒大小与织构分布.  相似文献   

7.
轧制前,对AZ80镁合金挤压板材在175℃分别时效75、160、200和240 min,接着在350℃轧制,最后在175℃进行1 h的退火处理。采用背散射电子衍射技术、X射线衍射和拉伸试验研究了预时效处理对退火态AZ80镁合金轧制板材组织与力学性能的影响。结果表明:预时效时间为200 min时,合金晶粒尺寸最小,基面织构强度较低,大角度晶界分数增加,合金力学性能最优,其屈服强度、抗拉强度和断裂总伸长率分别为315 MPa、377 MPa和16.2%。  相似文献   

8.
为了研究挤压剪切工艺对镁合金AZ61组织及性能织构的影响,在有限元模拟软件DEFORM-3D的辅助下,采用SEM对挤压棒材进行了组织观察,并对位于模具不同部位试样进行XRD测试分析。结果表明,挤压剪切工艺细化了AZ61镁合金组织,硬度变化符合组织变化趋势。随着挤压的进行,纵截面上晶粒取向发生变化,{0002}基面织构被削弱。  相似文献   

9.
利用WDW3100电子万能试验机对铸态AZ31镁合金试样进行预压缩量0%和3%处理,并采用新型的锥台强剪切挤压变形方法将AZ31镁合金铸棒挤压成板材。通过金相显微镜、拉伸性能测试及断口扫描分析研究预压缩变形对锥台剪切变形镁合金的微观组织与力学性能的影响。结果表明:3%预变形处理对铸态镁合金植入大量的孪晶组织,为后续动态再结晶提供充足的形核点,且镁合金在变形过程中受到剧烈强剪切变形,使得挤压成形板发生了充分的动态再结晶,晶粒细化至4.5μm。预压缩3%镁合金经锥台剪切变形后,伸长率高达23.6%,屈服强度和抗拉强度高达280.4 MPa和225.3 MPa。与预压缩0%的挤压镁合金相比,断裂伸长率提高幅度高达91%,屈服强度和抗拉强度略有降低。挤压温度对镁合金组织性能有重要的影响,预压缩3%的镁合金经290℃锥台剪切变形后,获得均匀细小的晶粒组织,具有优良的综合力学性能。  相似文献   

10.
研究微量(0.2%,质量分数)Ce和Ca对AZ31合金组织演变和成形性能的影响,期望通过改善组织和织构开发低成本高成形性能的镁合金。结果表明:Ce和Ca可以使挤压态AZ31板材再结晶晶粒更加均匀细小;Ce和Ca可以弱化轧制退火态板材的基面织构,Ca会使AZ31板材的基面织构基极向横向发散,同时,Ce和Ca还能使AZ31板材的r值和各向异性降低;Ce和Ca可以大幅提高AZ31合金板材的室温成形性能,Mg-3Al-1Zn-0.2Ce-0.2Ca合金薄板的基面织构强度为3.2,r值为1.05,Δr值为0.04,其Erichsen值达到6.0 mm。织构的改善主要是由于合金元素引起的滑移系的改变,板材各向异性的降低与其织构的改善密切相关,室温成形性能的提高可以归因于织构的改善、较小的r值和较大的n值。  相似文献   

11.
采用不同的轧制工艺,制备4种晶粒尺寸为7~18μm和不同强度基面织构的AZ31镁合金板材,通过单向拉伸试验和室温Erichsen试验,探讨晶粒尺寸与织构对镁合金板材室温成形性能的影响。结果表明:晶粒细化虽然增强了板材的力学性能,但不利于提高板材的胀形性能;基面织构的减弱使板材沿厚度方向变形能力增强,具有较好的胀形性能,但另一方面使板材的屈服强度降低。  相似文献   

12.
针对AZ31镁合金板材室温冲压成形较差的特点,采用在不同轧制温度下获得的镁合金板材对其进行拉伸、埃里克森和锥杯试验,并通过光学电镜和X射线衍射仪对其显微组织、织构和成形性能等进行研究。结果表明,AZ31镁合金板材的综合力学性能不仅与晶粒尺寸有关,还与晶粒取向有关;基面织构的减弱可明显提高板材的胀形性能,在基面织构强度相似的强况下,晶粒大小对板材的成形性能起决定性影响。  相似文献   

13.
针对AZ31镁合金板材室温冲压成形较差的特点,采用在不同轧制温度下获得的镁合金板材对其进行拉伸、埃里克森和锥杯试验,并通过光学电镜和X射线衍射仪对其显微组织、织构和成形性能等进行研究.结果表明,AZ31镁合金板材的综合力学性能不仅与晶粒尺寸有关,还与晶粒取向有关;基面织构的减弱可明显提高板材的胀形性能,在基面织构强度相似的强况下,晶粒大小对板材的成形性能起决定性影响.  相似文献   

14.
为了获得高性能镁合金板材,采用正向热挤压将铸态AZ31镁合金坯料挤压成2 mm厚的板材,研究了其显微组织演变及力学性能等。结果表明:铸态AZ31镁合金坯料挤压成板材后可以获得均匀细小的再结晶晶粒组织,其力学性能(屈服强度、抗拉强度、伸长率)大幅度提升。铸态AZ31镁合金坯料在400、450℃挤压成板材后,平均晶粒尺寸可由390μm分别细化至3.9、5.6μm。挤压后的AZ31镁合金板材展现出典型的(0001)基面织构,大部分晶粒的c轴垂直于板材表面。铸态AZ31镁合金的力学性能较差,而AZ31镁合金挤压板材在三个拉伸方向上均展现出优越的力学性能。随挤压温度的升高,AZ31镁合金挤压板材晶粒长大且显微组织不均匀,综合力学性能也有所下降。  相似文献   

15.
为了研究挤压态AZ31B镁合金在高应变速率下的拉压不对称性,对挤压态AZ31B镁合金进行了织构分析.采用分离式Hopkinson压杆和反射式拉杆装置分别沿挤压方向和垂直挤压方向进行了动态压缩和拉伸试验,应变速率范围在500~2650 s-1之间.结果表明,由于在挤压过程中形成了基面织构,沿挤压方向压缩时,拉伸孪晶{1012}<1120>容易启动,屈服强度对应变速率不敏感,且屈服强度较低;沿挤压方向拉伸时,拉伸孪晶不能启动,压缩孪晶{1011}<1120>和非基面滑移是其主要的塑性变形机制,合金屈服强度较高;合金在压缩和拉伸时表现出很强的拉压不对称性,压缩屈服强度与屈服强度的比值约为0.30.垂直于挤压方向拉伸和压缩时,没有表现出拉压不对称性.  相似文献   

16.
陈扬  毛萍莉  刘正  王志  曹耕晟 《金属学报》2022,58(5):660-672
为研究高应变速率冲击载荷下预压缩轧制态AZ31镁合金的退孪生行为与动态力学性能,将原始试样沿轧制方向(RD)进行真应变为4%的准静态预压缩,引入大量的■拉伸孪晶。利用分离式Hopkinson压杆(SHPB)装置对原始及预压缩AZ31镁合金样品沿板材法向(ND)进行应变速率为700、1000、1300和1600 s-1的高速冲击实验,并利用EBSD技术对原始试样、预压缩试样以及不同应变速率下的冲击试样进行微观组织分析。结果表明,相比于原始试样,预压缩AZ31镁合金试样内的基面织构强度明显减弱并形成c轴与RD平行的孪晶织构,由于拉伸孪晶界对母晶粒的分割作用使得平均晶粒尺寸明显降低。预压缩AZ31镁合金试样沿ND高速冲击时的主要变形机制为退孪生,随着冲击应变速率的增大,孪晶织构逐渐恢复至初始的强基面织构,孪晶面积分数和孪晶平均厚度均逐渐降低,平均晶粒尺寸逐渐增大。此外,沿ND冲击原始试样相比于预压缩试样具有更高的强度和更低的塑性,且在塑性变形过程中预压缩试样呈现出更加明显的应变速率敏感性。  相似文献   

17.
根据X射线衍射图谱绘制了晶面反极图,研究了拉伸变形对挤压态AZ31镁合金织构的影响.结果表明,挤压态AZ31镁合金具有明显的(0002)基面织构,且存在C轴与挤压方向呈16°~21°角分布的倾斜基面织构.拉伸变形使基面织构弱化,(1010)柱面沿C轴发生了45°角的转动.  相似文献   

18.
对变形镁合金AZ61铸态试样和不同温度下的挤压成形试样的微观组织结构、室温力学性能以及拉伸断口进行了研究.结果表明,360℃的热挤压温度不能成形试样,在370、385、400℃下进行热挤压可以得到外形完整、表面光洁的试样;随着挤压温度提高,AZ61挤压试样发生再结晶的晶粒数量显著增加,达到400℃时形成均匀细小的等轴晶组织;370、385、400℃下的挤压试样断口均表现为明显的塑性断裂特征,400℃时挤压试样的抗拉强度达到297.43 MPa,屈服强度达到221.42 MPa,伸长率为22.39%,具有较好的力学性能.  相似文献   

19.
Mg-Y及AZ31镁合金高温变形过程中微观织构的演化   总被引:1,自引:0,他引:1  
在温度为723 K、应变速度为3×10-3 s-1的条件下,对Mg-Y及AZ31镁合金挤压棒材进行单向压缩变形,利用OM、SEM和EBSD观察、分析Y对挤压棒材动态再结晶和微观织构的影响。结果表明:AZ31镁合金在真应变ε=0.2时发生明显的动态再结晶,在ε=0.5时,动态再结晶晶粒的体积分数高达80%以上;而Mg-Y合金在真应变ε=0.4时,动态再结晶体积分数尚不足10%,Y对镁合金动态再结晶有显著的阻碍作用;AZ31镁合金变形时,几乎所有晶粒的基面趋向于由变形前平行于压缩方向转至垂直于压缩方向,导致基面织构在ε=1.2时发生近90°的转动;Mg-Y合金则只有小部分晶粒发生转动,转动所形成的择优取向在动态再结晶后显著弱化,并导致取向分布更加随机;Y的添加可导致镁合金基面织构在动态再结晶后显著弱化。  相似文献   

20.
利用电子显微镜、扫描电镜、拉伸试验机等研究了不同挤压温度对AZ91镁合金显微组织与力学性能的影响。结果表明:在320~410℃,AZ91镁合金挤压后发生了不同程度的动态再结晶。与铸态合金相比,不同温度挤压后AZ91镁合金的强度和伸长率均明显提高。370℃挤压的AZ91镁合金晶粒最为细小。390℃挤压的镁合金动态再结晶较为充分。410℃挤压的试样组织晶粒变得粗大且不均匀。370℃挤压的AZ91镁合金综合力学性能最好,抗拉强度、屈服强度、伸长率分别达到346、253 MPa和12.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号