首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
分别采用微波法和传统固相法制备了Eu2+掺杂的Ba3Si6O12N2绿色氮氧化物荧光粉,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、荧光光谱仪等检测方法研究Ba3Si6O12N2:Eu2+的物相、表面形貌及光致发光特性。研究结果表明:在微波场下1275℃保温4 h合成的Ba3Si6O12N2:Eu2+绿粉的发光强度高于在传统固相法1300℃保温10 h的样品强度。微波辅助烧结可以降低活化能,从而提高扩散率,并大大提高了晶体的结晶性。研究了氮化硅含量对物相的形成、形貌和光致发光性能的影响。结果表明:氮化硅不仅能够促进晶体的结晶度,而且还能提高其在紫外激发下的发光强度。因此,微波法有望应用于合成具有高的相纯度和发光强度的其他氮氧化物荧光粉体。  相似文献   

2.
采用微波法制备了Eu2+ 掺杂的Ba3Si6O12N2绿色氮氧化物荧光粉, 着重研究了不同助熔剂: BaCl2、H3BO3、KF和NH4F对Ba3Si6O12N2:Eu2+发光性能的影响。利用X射线衍射(XRD)、荧光光谱仪、扫描电子显微镜(SEM)和量子效率(QE)等检测方法研究了不同助溶剂的作用机理。研究结果表明: 添加助溶剂能够显著提高荧光粉的发光强度, 添加不同助溶剂制备荧光粉的发光强度大小依次为H3BO3 > KF > BaCl2 >无助溶剂 > NH4F。当添加1.0wt%的H3BO3时, 所制备的荧光粉粒径分布比较均匀, 形貌较好, 荧光粉的发光强度最大, 且与不添加助溶剂制备的荧光粉相比, 有较高的量子效率和吸收效率, 不同温度下的发射光谱表明其热淬灭性低, 荧光寿命较短。  相似文献   

3.
研究了以β-Si_3N_4为原料制备Eu~(2+)掺杂的CaSi_2O_2N_2∶Eu~(2+)荧光粉,并分析了这类荧光粉的结构特点,通过实验发现该荧光粉有很宽的激发带,可以被紫外和近可见光激发,发射出550~568nm波长的峰。Eu~(2+)与CaSi_2O_2N_2∶Eu~(2+)荧光粉的发光强度有着重要的联系。随着Eu~(2+)浓度的增加激发峰和发射峰都有一定的红移现象,当浓度超过2%时,该荧光粉的发光强度会有所下降,即出现一定的浓度猝灭现象。  相似文献   

4.
采用高温固相法制备CaSi_2O_2N_2∶Eu~(2+)荧光粉,由于其强度有待进一步提高,通过掺杂Mg~(2+)提高CaSi_2O_2N_2∶Eu~(2+)荧光粉的发光强度,并通过表征,分析掺杂前后发光强度的变化,晶相的结构情况和颗粒的形貌特点等。  相似文献   

5.
在还原气氛下,采用高温固相法合成了Ca_2MgSi_2O_7:Eu~(2+),Rs~(3+) (R~(3+)=Ce~(3+),Y~(3+))系列荧光粉.结果表明,少量稀土离子的掺入没有改变晶体的物相结构.在Ca_2MgSi_2o_7:Euz~(2+)荧光粉中,Ce~(3+)和y~(3+)的掺入对荧光强度的影响较大,且与掺杂元素、掺杂量相关.当掺杂Ce~(3+)和Y~(3+)的量分别为0.007mol和0.05mol时,所得荧光粉在532nm处的发光强度分别是未掺杂时的127%和117%.结果表明,在Ca_2MgSi_2O_7中Ce~(3+)与Eu~(2+)存在能量传递,Ce~(3+)的加入显著敏化了Eu~(2+)的发光,导致荧光强度的进一步提高;Y~(3+)的掺杂可以使荧光粉的粒径减小,并导致基质中的电荷缺陷而敏化Eu~(2+)发光,从而使荧光强度进一步提高.  相似文献   

6.
采用水热法对高温固相反应制备的Ba_(3.52)B_(11)O_(20)F∶0.48Eu~(3+)红色荧光粉进行重结晶,并对其水热重结晶工艺、发光性能等进行了研究。利用XRD和SEM对水热处理前后的粉体进行了结构和形貌表征,通过荧光光谱分析研究了水热重结晶工艺对粉体荧光强度的影响,得出在溶液pH=6.0,加水量为20mL,140℃恒温温度下所获得的荧光粉的荧光强度最强,比水热重结晶前高了72%。  相似文献   

7.
利用碳热还原氮化法制备了Sr2-xSi5N8:xEu2+红色荧光粉,其中x=0.005~0.2,分析了稀土Eu2+离子浓度对荧光粉发光性能的影响规律,采用DFT理论分析了Sr2-xSi5N8:xEu2+的电子结构和发光原理。结果发现,随着Eu2+浓度的升高,荧光粉发射光谱的发射峰值出现红移。实验研究发现其浓度猝灭点为x=0.02,当x=0.02时,发射光强度最大,发射光谱为小于600nm的橙黄光。当x在0.05~0.15的范围时,发光强度衰减幅度较小,且发射光谱为610nm以上的红光。利用第一性原理对Eu2+浓度x=0.015625~0.125的Sr2-xSi5N8:xEu2+荧光粉的能带结构计算显示,随着Eu2+浓度的升高带隙减小,理论计算浓度猝灭点在x=0.0625和x=0.125之间。  相似文献   

8.
使用高温固相法合成了长余辉发光材料Ba3.88-x(Si3O8)2∶0.12Eu2+,xNd3+。实验分别获得了样品的晶体结构、激发与发射谱、余辉衰减、热释光等信息。样品呈现Eu2+的宽带发射,发射峰位在495nm,Nd3+的共掺没有引入新的发光中心;Nd3+共掺对材料的荧光强度和余辉强度都有明显的提高,并延长了余辉时间,Nd3+共掺的最优比例为x=0.04,此条件下材料的肉眼可视的余辉时间从Eu2+单掺的约20min延长至1h;通过对样品的不同等待时间的热释光分析,发现热释光峰位随时间向高温方向移动,过程中半高宽基本不变,对称因子μg维持在0.52左右,对应的陷阱深度为0.89eV,陷阱释放载流子的过程可视为二阶动力学过程。  相似文献   

9.
采用水溶液共沉淀法合成了网格状,高度结晶的YBO3:Eu3+橙红色荧光粉。利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和光致发光光谱(PL)等分析手段对样品进行了表征。结果表明所合成的产物为六方结构YBO3,没有形成其他的物相。样品在593nm发射下,观察到YBO3:Eu3+的激发光谱其主峰位置在392nm处。相应的,以392nm作为激发波长可以观察到样品的发射光谱其主峰位置在593nm处。在紫外灯照射下,样品呈现出明亮的橙红色。  相似文献   

10.
采用高温固相法制备出一种Eu2+,Mn2+共掺的蓝绿色荧光粉BaMgAl10O17:Eu2+,Mn2+(BAM:Eu2+,Mn2+),对其进行了X射线衍射分析和光谱特性的测试.研究表明,它的发射光谱为双峰结构,峰值分别位于455 nm和525 nm处.455 nm发射峰归结为BAM中部分取代Ba2+离子的Eu2+离子的5d→4f的跃迁辐射;525 nm的发射峰源于部分Eu2+能量传递给Mn2+离子,Mn2+的4T1→6A1的跃迁辐射.采用近紫外LED芯片与该荧光粉以及一种红色荧光粉Ca(La0.5Eu0.5)4Si3O13封装,在20 mA前向电流驱动下,获得了显色指数为88的白光LED.  相似文献   

11.
采用高温固相法制备双层钙钛矿Sr3Ti2O7:Eu3+系荧光粉。利用X射线衍射(XRD)、扫描电子显微镜(SEM)和荧光光谱,研究了不同煅烧温度对双层钙钛矿Sr3Ti2O7:Eu3+荧光粉的晶体结构、形貌和发光性能的影响。结果表明:荧光粉在煅烧温度为1300℃时为纯双层钙钛矿Sr3Ti2O7相,且其有效激发波长为在395nm和465nm,这与当前近紫外和蓝光LED芯片的输出波长相匹配,激发产生的相应发射波长分别为618nm和626nm。该荧光粉是一种理想的白光LED用红色荧光粉。  相似文献   

12.
采用表面活性剂(十二烷基苯磺酸钠)辅助的均相沉淀法,将稀土荧光前驱体氧化物复合在具有一维结构的碳纳米管表面,成功制备了具有一维结构的CNTs@Y_2O_3:Eu~(3+)纳米复合材料。通过SEM、XRD、TEM-EDS、FT-IR、TGA和PL等表征手段分别探究了复合材料的微观形貌结构、热稳定性、结晶度以及荧光性能。研究结果表明,CNTs@Y_2O_3:Eu~(3+)荧光复合材料在UV激发下显示出强烈的稀土Eu~(3+)特征荧光。同时,在400~1000℃不同煅烧温度范围内,该复合材料荧光强度随之发生明显变化,具有较强的温度敏感特性。  相似文献   

13.
通过高温固相合成工艺制备出白光LED用BaSi_2O_5∶Eu~(3+)红色荧光粉,通过X射线衍射、荧光光谱、紫外-可见光光谱仪对材料的晶格结构、发光特性和白光LED灯珠的光谱特性进行了测试。研究结果表明,Eu~(3+)的掺入没有改变基质的晶格结构,在Eu~(3+)掺杂浓度为5.0%(mol,摩尔分数)时,荧光粉的发射强度最高,最强激发峰为395nm,最强发射峰为614nm,通过结合紫光芯片和蓝黄荧光粉制备的白光LED灯珠,相关色温为4789K,显色指数为92,因此,BaSi2O5∶Eu~(3+)红色荧光粉是一种适合于紫光芯片应用的材料。  相似文献   

14.
采用溶胶-凝胶法制备了CaAl2SiO6∶Eu2+荧光粉,利用X射线衍射仪、荧光光谱仪、热分析仪对其结构和光学性质进行了研究.结果表明,样品经1 000℃CaAl2SiO6∶Eu2+荧光粉在430 nm附近的发光峰为Eu2+中心的4f65d1(t2g)→4f7(8S7/2)跃迁;随Eu2+离子浓度的增加,样品的发光强度先增加后降低,在Eu2+浓度为0.7 mol%时达到最大;CaAl2SiO6∶Eu2+系列荧光粉的激发峰波长在280~390 nm之内,可以作为一种新型的UV-LED用三基色荧光粉.  相似文献   

15.
采用高温固相法首次合成了由Eu3+和Tb3+共激活的Gd2MoB2O9白色荧光粉,并对其发光性质进行研究。该荧光粉在近紫外光(375nm)激发下发出较强的白色荧光(常温),光谱测试显示Gd2MoB2O9∶Eu3+,Tb3+的发射光谱中存在3个发射峰,分别位于486,543和613nm处,能够合成较理想的白光;激发光谱在250~400nm处均有较强的吸收,能与紫外LED很好地匹配,适用于白光LED。  相似文献   

16.
研究了碱金属及碱土金属离子掺杂的荧光体Y2 O3∶Eu3+ 0 .0 5,A+ 0 .0 2 (A =Li、Na、K)和Y2 O3∶Eu3+ 0 .0 5,B2 + 0 .0 2 (B =Mg、Ca、Sr、Ba)的荧光、余辉发光及热释光特性。余辉光谱数据表明 :杂质离子掺杂的荧光体Y2 O3∶Eu3+ 的余辉发射主峰与未掺杂荧光体Y2 O3∶Eu3+ 的荧光发射主峰 (611nm)一致 ,为经典Eu3+ 的5D0 7F2 电偶极跃迁 ;杂质离子的引入明显地延缓了Y2 O3∶Eu3+ 的余辉衰减 ,其中Y2 O3∶Eu3+ ,A+ (A =Li、Na、K)的余辉衰减趋势几乎完全一致 ,而Y2 O3∶Eu3+ 、B2 + (B =Mg、Ca、Sr、Ba)的余辉衰减趋势由慢到快依次为Ca、Sr、Ba、Mg。热释光谱数据显示 ,杂质离子的掺杂导致基质中电子陷阱能级的生成 ,这是导致余辉衰减减慢的直接原因。Y2 O3∶Eu3+ ,A+ 的热释峰都位于 175℃左右 ,相应电子陷阱能级深度为 0 .966eV左右 ;而Y2 O3∶Eu3+ ,B2 + 的热释峰由高到低分别位于 192℃ (Ca)、164℃ (Sr)、13 5℃ (Ba)、118℃(Mg) ,电子陷阱能级深度分别为 1.0 0 3eV(Ca)、0 .942eV(Sr)、0 .880eV(Ba)、0 .843eV(Mg)。结合余辉衰减数据 ,可以看到 ,Y2 O3∶Eu3+ ,A+ 和Y2 O3∶Eu3+ ,B2 + 的热释光谱与相应荧光体的余辉衰减趋势吻合得十分好 ,由此可以得出 ,一定相同的条件下 ,热释峰值温度越高 ,杂  相似文献   

17.
采用高温固相法制备近紫外光激发的BaSr_2Si_3O_9∶Eu~(3+)发光材料,研究了Eu3+不同掺杂量对样品晶体结构、发光特性的影响规律。用X射线衍射(XRD)、荧光光谱(PL)、紫外-可见光谱分析系统对样品进行了表征和封装评价。结果表明,随着Eu~(3+)的掺入,BaSr_2Si_3O_9晶体结构并没有发生变化;激发主峰为395nm,发射主峰为611nm,随着Eu~(3+)掺杂量的增加,样品发光强度先升高后降低,在掺杂量为6%(摩尔分数)时发射强度最大;结合396nm近紫外芯片和BAM双峰蓝色荧光材料进行封装测试,所制备白光LED显色指数为88,色温5953K,因此,BaSr_2Si_3O_9∶Eu~(3+)是一种很有应用前景的近紫外激发发光材料。  相似文献   

18.
采用非均相成核法对BaAl12O19:Mn2+绿粉进行Al2O3表面包覆研究,当pH=5.0,包覆剂用量为1.0%~1.5%时,制备得到了包覆层连续均匀的γ-Al2O3包覆型BaAl12O19:Mn2+包覆型荧光粉。热劣化结果表明,BaAl12O19:Mn2+绿粉经Al2O3包膜处理后,抗热劣化性能得到了明显改善。  相似文献   

19.
采用高温固相法制备了GdVO_4:Eu~(3+)红色荧光粉。通过X射线粉末衍射(XRD)、扫描电子显微镜(SEM)和光致发光光谱(PL)对样品的物相、形貌及发光性能进行了表征。结果表明:所合成的GdVO_4:Eu~(3+)红色荧光粉为四方晶系,表面为类球形。激发光谱中,位于382 nm、395 nm、418 nm和466 nm的激发峰分别归属于~7F_0→~5L_7、~7F_0→~5L_6、~7F_0→~5D_3及~7F_0→~5D_2跃迁。发射光谱中,位于593 nm、625 nm、654 nm和701 nm的发射峰对应Eu~(3+)的~5D_0→~7F_1、~5D_0→~7F_2、~5D_0→~7F_3及~5D_0→~7F_4跃迁。当Eu~(3+)掺杂量为7%,800℃煅烧8 h时,GdVO_4:Eu~(3+)红色荧光粉CIE色坐标为(0.6426,0.3530),荧光寿命为0.52 ms,是一种有望用于白光LED的高效红色荧光粉。  相似文献   

20.
采用阶梯热处理的方式对Bi2O3-SiO2基玻璃进行析晶处理,得到了具有不同结晶率和透明度的Bi4Si3O12(BSO)基玻璃陶瓷。实验表明,分段热处理有利于控制BSO基玻璃陶瓷中晶粒的数量和尺寸,从而影响玻璃陶瓷的透明度和发光性质。分段热处理后样品的透射谱显示,BSO基玻璃陶瓷(在600℃保温1 h,然后升温至800℃保温1 h)的透过率可达73.1%(λ500 nm)。制备出的BSO基玻璃陶瓷具有和BSO单晶相似的发光性质,在可见光波段(380~680 nm)有发光,且发光强度与结晶率成正比。低温(14 K)下,该BSO基玻璃陶瓷的发光强度较室温下提高了约12倍。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号