首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 171 毫秒
1.
水热合成法制备纳米SnO2-Fe2O3复合材料,以SnO2-Fe2O3为活性物质,多壁碳纳米管(MWCNTs)导电纸代替传统铜箔作为负极集流体制作锂离子电池。采用XRD、SEM进行表征,结果显示,SnO2-Fe2O3均匀嵌入到MWCNTs构建的三维导电网络的空隙中。电化学测试结果表明,SnO2-Fe2O3/MWCNTs导电纸作为负极电极能够显著提高锂离子电池的循坏和倍率性能。在100 mA/g电流密度下循环30次,SnO2-Fe2O3/MWCNTs导电纸电池比容量达到1 088 mAh/g,而在200 mA/g电流密度下循环200次后,SnO2-Fe2O3/MWCNTs导电纸比容量能稳定保持在898 mAh/g,表现出良好的循环性能,逐渐增大充放电电流,电池的比容量有所下降但其库伦效率仍然保持在96%以上,而在高倍率(1 600 mA/g)下进行充放电时,SnO2-Fe2O3/MWCNTs导电纸比容量仍然能够保持在547 mAh/g,之后再将电流密度降到100 mA/g,比容量重新回到1 000 mAh/g,SnO2-Fe2O3/MWCNTs导电纸表现出十分优异的电化学性能。   相似文献   

2.
Fe2O3具有理论比容量高和价格低廉等特点, 已成为锂离子电池负极材料的研究热点之一。实验以不同质量比PVP/FeCl3溶液为前驱体, 静电纺丝技术制备PVP/FeCl3纳米纤维并热处理, 得到不同直径的Fe2O3纳米纤维负极材料, 并以水热合成法制备了Fe2O3纳米颗粒。利用X射线衍射、热重、红外光谱、扫描电镜、透射电镜和恒流充放电等测试手段对材料的物相、微观形貌和电化学性能进行表征。结果表明, Fe2O3纳米纤维比Fe2O3纳米颗粒表现出更优的电化学性能, 直径为160 nm的Fe2O3纳米纤维负极材料的倍率性能和循环性能最佳, 材料在0.1 A/g电流密度下的可逆容量为827.3 mAh/g;在2 A/g电流密度下70次循环放电比容量有439.1 mAh/g。  相似文献   

3.
吁霁  夏媛 《无机材料学报》2014,29(11):1127-1132
以棉纤维作为模板, 制备褶皱层状SnO2。通过XRD、SEM、TEM、CV、恒流充放电、EIS等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 产物具有由粒径16~21 nm的SnO2纳米颗粒构成的褶皱状形貌。电化学测试表明该材料在电流密度70 mA/g时循环50次后放电比容量仍高达614 mAh/g, 甚至在电流密度为3000 mA/g时放电比容量仍达到405 mAh/g, 表现出优异的循环性能和倍率性能。  相似文献   

4.
本工作采用缓冲溶液法制备Mn掺杂Ni(OH)2(Ni1-xMnx(OH)2, x=0.1, 0.2, 0.3, 0.4), X射线衍射测试表明样品主要是β相, 有少量Mn3O4杂相; 循环伏安测试表明, x=0.2的材料还原峰积分面积最大、还原分支的峰电流最高; 恒流充放电测试表明, 在100 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量最高, 其第20次循环放电比容量为271.8 mAh/g, 同等条件测试的商用β-Ni(OH)2放电比容量为253.6 mAh/g; 在300、500 mA/g电流密度下, Ni0.8Mn0.2(OH)2放电比容量仍保持最高, 分别为294.7、291.5 mAh/g, 而且Mn掺杂Ni(OH)2的循环稳定性也优于商用β-Ni(OH)2。Mn掺杂可改善镍电极的循环稳定性、降低镍电极成本, 具有广阔的应用前景。  相似文献   

5.
先用直流(DC)电弧法制备TiH1.924纳米粉作为前驱体,再用固-气相反应制备了片状结构的TiS3纳米粉体。使用X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、拉曼光谱分析和性能测试等手段对其表征,研究了TiS3纳米片的结构和将其用作负极的锂离子电池的性能。结果表明:TiS3纳米片具有特殊的片状结构,其厚度约为35 nm。将TiS3纳米片用作负极的锂离子电池具有良好的电化学性能,在500 mA/g电流密度下循环300圈后其容量仍保持在430 mAh/g。以5 A/g的大电流密度放电其比容量为240 mAh/g,电流密度恢复到100 mA/g其放电比容量稳定在500 mAh/g。TiS3良好的倍率性能,源于其特殊的纳米片状结构。这种单层片状结构,能较好地适应电极材料在大电流密度多次放电/充电过程中产生的应变引起的体积变化,使其免于粉碎。  相似文献   

6.
采用醇热技术可控制备了中空核壳结构α-MoO3-SnO2二次锂离子电池复合负极材料。通过XRD、SEM、TEM、CV和恒流充放电等测试手段对材料结构、形貌和电化学性能进行了表征。结果表明: 构建的多元金属氧化物既具有电化学活性成分, 又含有骨架支撑部分, 独特的中空结构有效地缩短了电子和锂离子传输路径。电化学测试表明: 该材料在电流密度50 mA/g时循环100次后放电比容量仍高达865 mAh/g。在电流密度为1000 mA/g时循环100次后放电比容量仍达到545 mAh/g, 表现出优异的循环性能和倍率性能。该合成方法简单、成本低, 产量高, 可为制备其它中空核壳结构先进功能材料提供借鉴。  相似文献   

7.
Co3O4由于较高的理论容量近年来被视为锂离子电池新型负极材料的热门候选之一,然而其较差的电导率和循环性能制约了其进一步发展。以ZIF-8@ZIF-67为自模板,三聚氰胺和g-C3N4为碳源,通过碳化和氧化处理制备了碳纳米管和石墨烯作为导电桥梁和外壳的Co3O4/C三维导电网络。颗粒纳米化的策略和锌的高温挥发造孔使其在0.5、2 A/g的电流密度下循环200、800圈后仍具有1 139.7、1 002.1 mAh/g的比容量,从0.2 A/g逐渐增大充放电的电流密度至10 A/g又恢复到0.2 A/g后比容量仍有初始容量的94.9%。该网络结构和同类材料相比表现出较为优异的循环和倍率性能。  相似文献   

8.
以活性炭和升华硫为原料,采用熔融法、气相法和真空浸渍法制备硫/碳复合正极材料,通过碳硫分析、粒度测试、X射线衍射(XRD)、扫描电子显微镜(SEM)、BET及孔径分布来表征材料的结构,并用恒流充放电测试考察了所得材料的电化学性能。结果表明,气相负载法制备的复合材料具有更好的电化学性能,在15mA/g电流密度下首次放电比容量为768mAh/g,不同电流密度循环24次后容量仍有405mAh/g。  相似文献   

9.
制备长循环稳定、高容量的负极材料是锂离子电池实现大规模储能应用的前提之一。利用静电纺丝技术和水热硫化的方法制备了均匀分布的NiS2/碳纳米纤维(NiS2/C)复合材料。作为锂离子电池负极材料,NiS2/C电极的首次放电比容量为864.6 mAh/g,首次库仑效率为62.7%。其中不可逆容量为322.9 mAh/g,不可逆容量主要由转换反应的部分不可逆及固态电解质(SEI)膜的形成造成的。NiS2/C复合电极表现出优异的循环稳定性,200 mA/g下150次循环后容量仍然维持在519 mAh/g,容量保持率高达90.4%。此外,在2 A/g大电流密度下,NiS2/C电极的容量仍高于310 mAh/g表现出出色的倍率性能。借助XRD、SEM及TEM表征,分析发现包裹着NiS2纳米颗粒的碳纤维,作为良好的导电介质,既可以提高NiS2的导电性,也可缓解NiS2脱嵌过程中的体积膨胀,使得NiS2/C电...  相似文献   

10.
本文采用溶胶-凝胶法制备了钴和钛共掺杂的层状LiNi0.82Co0.15Ti0.03O2正极材料,研究了离子掺杂对LiNiO2材料电化学性能的影响。XRD和XPS分析显示,钴和钛共掺杂可以抑制Li+和Ni2+离子在Li层的混排现象。电化学测试结果表明,钴单元素掺杂可以显著提高LiNiO2材料的倍率性能,而钛单掺杂则提高了材料的循环稳定性。进一步地,通过钴钛共掺杂的协同作用,可以使LiNiO2材料的倍率性能和循环稳定性同时得到极大的提高。在200 mA/g的电流密度下循环200次,LiNi0.82Co0.15Ti0.03O2材料的容量保持率高达94.4%,而未掺杂的LiNiO2材料容量保持率仅为57.1%;且在1000 mA/g的电流密度下,放电比容量仍能维持在100 mAh/g左右。  相似文献   

11.
以蔗糖为碳源, 以草酸为抗氧化剂, 采用溶剂热、球磨和固相烧结相结合的方法制备了LiMn0.6Fe0.4PO4/C正极材料, 并通过改变烧结温度得到了不同形貌结构的目标产物。以金属锂片为对电极, 组装成锂离子半电池, 探究其电化学性能。研究结果表明, 当烧结温度为650℃时, 该材料表现出优异的电化学性能, 在0.2C(1C=170 mA/g)的电流密度下, 起始容量为119.1 mAh/g, 循环80次之后, 容量上升到148.8 mAh/g, 并且该材料在大电流密度下也表现出优异的循环稳定性。  相似文献   

12.
以2-乙基己酸亚锡为原料, 通过静电纺丝以及随后在惰性气氛中煅烧成功制备出电化学性能优良的SnO2-C复合纤维。X射线衍射(XRD)、拉曼光谱(Raman)、X射线光电子能谱(XPS)、热重分析(TGA)、扫描电镜(SEM)和透射电镜(TEM)的分析结果表明: SnO2-C复合纤维具有无定形结构, 直径为100~300 nm, 含碳量约38%。电化学测试结果表明: 在50 mA/g的电流密度下, 无定形SnO2-C复合纤维的首次放电比容量、充电比容量和库仑效率分别为1370.1 mAh/g、757.5 mAh/g和55.28%; 在50 mA/g的电流密度下循环80次后, SnO2-C复合纤维的比容量为611.6 mAh/g, 没有出现明显的容量衰减。SnO2-C复合纤维高的比容量和良好的循环性能归因于其SnO2均匀分布的SnO2-C复合一维结构。  相似文献   

13.
采用溶剂热法制备单分散的Fe3O4微球, 对其表面进行包覆SiO2和氨基化处理, 再与氧化石墨烯复合, 化学还原后得到Fe3O4-W-RGO复合材料。SEM和TEM照片显示, SiO2均匀包覆在Fe3O4微球(直径~440 nm)表面形成Fe3O4@SiO2核壳微球, 紧密束缚于RGO纳米片表面。XRD测试结果表明Fe3O4微球结晶度好、纯度高。电化学性能测试结果表明: 在0.01~3.00 V电压范围和0.1C倍率下, Fe3O4-W-RGO复合材料的首次放电容量为1246 mAh/g, 100次循环后保持830 mAh/g; 在2C倍率下放电容量达到484 mAh/g, 具有较好的倍率性能和循环性能。  相似文献   

14.
Bi2Mn4O10具有高的理论比容量, 被认为是一种理想的锂离子电池负极材料。本研究以硝酸铋和乙酸锰为原料, 采用聚丙烯酰胺凝胶法制备Bi2Mn4O10负极材料, 考察了制备条件对Bi2Mn4O10负极材料的物相、形貌及电化学性能的影响。结果表明: 在丙烯酰胺含量与总金属离子摩尔比为8 : 1, 葡萄糖浓度为1.11 mol/L, 热处理温度为873 K的条件下, 可得类球型、分散性良好的纯相Bi2Mn4O10粉末。作为负极材料, Bi2Mn4O10粉末在0.2C (1C=800 mA/g)倍率下循环50圈后可保持496.8 mAh/g的比容量, 容量保持率为76.9%; 3C倍率下放电容量为232 mAh/g。  相似文献   

15.
崔瑜  王艳芝  陈召凡 《无机材料学报》2015,30(11):1218-1222
以钛酸丁酯为TiO2前驱体, 通过水热法制得TiO2/石墨烯复合物。使用X射线衍射(XRD)、热重分析(TG)、透射电镜(TEM)、扫描电镜(SEM)和电化学充放电等手段对材料进行了表征和分析。结果表明: TiO2颗粒均匀地分散在石墨烯的表面, 复合物中石墨烯的含量为24.67%。当该材料用作锂离子电池负极材料时, 在2C的放电倍率下, 首次放电容量为384.35 mAh/g, 循环100次后的放电容量为130.26 mAh/g, 是纯TiO2电极放电容量的2.93倍。与纯TiO2电极相比, TiO2/石墨烯复合物的电荷转移电阻较低。TiO2/石墨烯复合物具有较好的倍率性能和较高的电化学反应活性。  相似文献   

16.
锂硫电池是传统锂离子电池最有前途的替代品之一,多硫化物的溶解和导电性差是制约锂硫电池应用的两个重要因素。通过水热法合成了Fe2O3-还原氧化石墨烯(RGO)-碳纳米管(CNT)复合载硫材料,并通过调节氨水浓度,实现了复合材料中Fe2O3的颗粒尺寸的有效调控,发现小尺寸的Fe2O3颗粒具有更好的吸附和催化作用。合成的Fe2O3-RGO-CNT-S正极材料在1 C倍率下首次放电容量为1 286 mA·h/g,循环500圈后剩余718 mA·h/g,每圈的容量衰减率为0.08%。在0.2、0.5、1、2和4 C倍率下的平均比容量为983、825、769、673和604 mA·h/g,具有良好的倍率性能。在5 C倍率下循环500次仍剩余527 mA·h/g,具有良好的大电流循环性能。Fe2O3-RGO-CNT-S正极材料特别适用于高性能锂硫电池,具有优异的电化学性能主要是由于R...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号