首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
中心提升管内循环流化床生物质气化装置的关键是合理控制物料循环量.自行设计并搭建了中心提升管内循环流化床冷态试验台,在小型试验台上就运行参数对颗粒循环流率的影响进行了试验.试验结果表明:颗粒循环流率随着提升管风速或鼓泡床风速的增加而增加,并且当提升管风速或鼓泡床风速分别增加到一定程度时,颗粒循环流率增加趋于缓慢.在试验基...  相似文献   

3.
自行设计并搭建中心提升管内循环流化床冷态试验台,试验研究提升管风速、鼓泡床风速、鼓泡床静床高、床料平均粒径对颗粒循环流率的影响。试验结果表明:对于给定的床料,颗粒循环流率随两床风速的增加而增加,并且当提升管风速或鼓泡床风速分别增加到一定程度时,颗粒循环流率增加趋缓;固定两床风速,颗粒循环流率随鼓泡床静床高的增大而增加,随物料平均粒径的增大而减小。通过实验数据回归,得到颗粒循环流率计算关联式,计算值相对误差在±18%以内,可以很好地预测颗粒循环流率。  相似文献   

4.
自行搭建了带提升管的内循环流化床试验台,研究了提升管风速、气化室风速、颗粒平均粒径、床层高度对循环流率的影响。基于遗传算法优化BP神经网络原理,建立了GA-BP人工神经网络模型,用来预测带提升管的内循环流化床的颗粒循环流率。通过对GA-BP神经网络模型颗粒循环流率的预测值与试验值的比较发现:当隐含层数目为22时,最大相对误差为±6.6917%,误差的均方差为2.899%。该模型预测数据与试验值比较吻合,能够较好的预测颗粒循环流率。  相似文献   

5.
合理的循环流率是内循环流化床稳定运行的关键之一。在自行搭建的试验台上,对各控制参数对循环流率的影响进行研究,发现:颗粒循环流率随气化室风速和提升管风速的增大而增大,但增长速率逐渐变小;随料层高度的增大而增大;随着物料粒径的增大,循环流率减小,并且减小趋势增大。此外提出了3种循环流率模型,并对模型计算值与试验值进行比较,得到了较优模型。  相似文献   

6.
7.
在自行搭建的双循环流化床冷态实验系统上研究了鼓泡床静床层高度、颗粒平均粒径、鼓泡床流化风速、快速床总流化风速及一次风量比例等控制参数对颗粒循环流率的影响,提出了基于上述控制参数的颗粒循环流率计算关联式。结果表明:随着鼓泡床流化风速的增加,颗粒循环流率变化不明显;随着快速床中一次风量比例和总流化风速的增加,颗粒循环流率均增大,当一次风量比例和总流化风速达到一定值后,颗粒循环流率的增幅逐渐变缓;颗粒循环流率随着静床层高度的增加而增大,随颗粒平均粒径的增大而减小,且颗粒平均粒径的影响程度较大;所提出的关联式能够较好地预测颗粒循环流率。  相似文献   

8.
在锥形布风板双循环流化床冷态装置上,研究了提升管风速、气化室风速、物料质量和颗粒粒径对提升管颗粒循环流率的影响,并与水平布风板的结果进行了对比.利用3种改进的BP神经网络算法建立模型来预测循环流率.结果表明:提升管颗粒循环流率随着提升管风速和气化室风速的增大而增大,当风速达到一定值后,增大趋势逐渐平缓;循环流率随着物料质量的增大基本呈线性增大,随着颗粒粒径的增大而明显减小;锥形布风板比水平布风板更具优势,同样条件下可以增大循环流率;BFGS拟牛顿算法的预测效果最佳,其颗粒循环流率预测值与实验值的最大相对误差为7.7035%,平均相对误差为3.5943%.  相似文献   

9.
循环流化床中颗粒内循环与循环流化床锅炉的设计   总被引:2,自引:0,他引:2  
本文从循环床锅炉密相区的热平衡计算出发,探讨了密相区内受热面面积及密相区高度与飞灰循环倍率、密相区燃烧份额的关系,并以4种典型煤种为例,分析了煤种变化对密相区高度的影响。设计计算和运行经验相结合,在密相区热平衡分析中,引入了床内粒子循环的概念,从而对密相区内热平衡和受热面面积的确定有更深入的理解。  相似文献   

10.
基于不同快速床压降的计算方法建立动力学模型实现对颗粒循环流率的预测计算,并进行冷态系统的实验验证。研究发现:颗粒循环流率随鼓泡床流化床风速的增大无明显变化;随快速床风速(二次风风速)的增大,出现增大趋势,但增长速率逐渐放缓;颗粒循环流率随经床层高度的增加而增大,随平均粒径的减小而增大,且平均粒径的影响程度较大。在实验各工况下模型计算值与实验值误差的最大误差为18.59%,在工业允许范围内验证该动力学模型的准确性。  相似文献   

11.
自行设计搭建了双循环流化床冷态装置,通过单一变量法实验,研究气化室风速、提升管风速、物料粒径及物料量对锥形布风板双流化床颗粒循环流率的影响,得出改良后的锥形布风板颗粒流率要高于水平布风板,并且颗粒循环流率随着气化室风速、提升管风速、物料量的增加有所增大,随着物料粒径的增大而减小。利用Matlab建立了3种改进BP神经网络模型分别预测双流化床颗粒循环流率,得出含有1个隐含层,26个神经元节点数的LM-BP神经网络对锥形布风板双循环流化床颗粒循环流率具有较好的预测效果。  相似文献   

12.
运行参数和结构尺寸是内循环流化床物料循环流率的重要因素。设计并搭建了内循环流化冷态试验台,通过实验分析了气化室风速、提升管风速、返料孔高度及大小对物料循环流率的影响。实验表明:物料循环流率随气化室风速、提升管风速的增大而增大,但增加幅度变化不同;随返料孔位置的增高而下降,且下降速度加快;随着返料孔面积的增大,先增大然后减小。  相似文献   

13.
陈鸿伟  杨新  尹猛  成岭 《动力工程》2012,(10):760-764,791
在带中心提升管的内循环流化床冷态试验台上,针对锥形和平板形2种布风板布置方式下各控制参数对循环流率的影响进行了试验研究.结果表明:锥形布风板上的临界全部流化速度明显大于物料临界流化速度;随着气化室和提升管内风速的增加,循环流率增大,但增大的速率逐渐降低;气化室和提升管内风速以及料层高度对锥形布风板下循环流率的影响大于平板形布风板,但是物料粒径对锥形布风板循环流化床循环流率的影响却小于平板形布风板.  相似文献   

14.
混合颗粒循环流率是气化反应的双循环流化床系统稳定运行的关键。在自行搭建的双循环流化床冷态系统上,对气化室风速、提升管风速、初始物料质量和石英砂粒径等控制参数对不同稻壳质量比的稻壳-石英砂混合颗粒的循环流率的影响进行实验研究。研究表明:混合颗粒循环流率随着气化室和提升管风速的增加而增加;随着初始物料质量的增加,气化室侧返料管压力增加,混合颗粒循环流率增大;随着粒径增加,石英砂颗粒流化困难,循环流率减小;由于稻壳密度小,形状不规则,在一定程度上阻碍物料的流化,因此随着稻壳质量比的增加循环流率下降;基于以上各参数提出经验关联式,预测误差在-18. 04%~19. 8%间,能够很好地对双循环流化床系统中稻壳-石英砂双组份物料颗粒的循环流率进行预测。  相似文献   

15.
16.
内循环流化床颗粒动力特性的研究   总被引:4,自引:0,他引:4       下载免费PDF全文
本文介绍了V型内循环流化床中颗粒动力特性的试验研究结果,包括颗粒内循环的运动轨迹,床层内压力分布特性及流态化速度等。  相似文献   

17.
针对循环流化床锅炉内沿高度方向颗粒流态呈现湍流床、快速床,颗粒浓度沿高度方向呈上稀下浓分布,沿床横截面方向呈环形分布的特点,在分析总结国内外学者主要研究成果的基础上,阐述炉顶结构对循环流化床锅炉颗粒内循环的影响机理,并在不同安装高度下对比研究了多种炉顶结构对颗粒内循环的强化作用.  相似文献   

18.
开发了一种通过测量下落颗粒和靶板碰撞冲击力来确定颗粒流率的流量计,通过试验验证了该流量计的可行性,并研究了颗粒下落速度、颗粒粒度和颗粒密度对流量计的影响.建立了该冲击式流量计的理论模型,利用冷态流化床试验数据对理论模型进行了校验.结果表明:该流量计具有操作简便、测量准确、反应灵敏、易于校准、对提升管内的颗粒流动无干扰的特点;模型计算结果与试验数据较吻合,可利用模型简化流量计的校准程序,增加流量计的应用范围.  相似文献   

19.
在一冷态循环流化床实验装置上,考察了一定颗粒原始存料量下,流化风速和回料风量对物料在循环系统中的分布和循环流率的影响.实验结果表明,当固定回料风量时,系统颗粒循环量随着流化风速的增加先增加后有所减少.流化风速较高时,系统将离开了传统的快速床操浊?为在高风速下保持和提高颗粒循环流率,需要进一步提高回料阀的输送能力.当固定流化风速时,回料阀松动风的增加将提高系统颗粒循环流率;但随着料封高度的降低,回料阀向提升管输送的颗粒量趋于稳定.过高的松动风量将破坏正常的料封,这对实际操作是不利的.  相似文献   

20.
齐云龙  刘道银  蔡葵  陈晓平 《锅炉技术》2015,46(2):30-33,43
内循环流化床能够有效组织颗粒在床内的运动,具有广泛的工业用途。采用荧光大颗粒示踪,运用图像处理法,在二维流化床实验台上,研究了流化风速、静止床层高度等参数对床内大颗粒的速度分布概率以及循环时间的影响。结果表明:提高流化风速和静止床层高度,循环口两侧差压增大,颗粒内循环流率增大,循环时间变短。颗粒横向和纵向速度分布概率的特征显著不同。在低速床中,颗粒纵向速度超过50%分布在负值区域,表现出明显的向下运动的特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号