首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用X射线衍射、金相和扫描电镜等手段,结合力学性能检测和电导率测定,研究了单级时效和双级时效处理对铸态新型Al-Zn-Mg-Cu合金微观组织和综合性能的影响。结果表明:随时效温度的升高和时效时间的延长,晶粒尺寸缓慢增大,电导率逐渐增加。铸态新型Al-Zn-Mg-Cu合金最佳的单级时效工艺为135 ℃×12 h,此时合金的硬度为231.8 HV0.2、抗拉强度为568 MPa、伸长率为2.8%、电导率为33.7%IACS;最佳的第二级时效制度为155 ℃×4 h,此时合金的硬度为216.9 HV0.2、抗拉强度为558.7 MPa、伸长率为4.1%、电导率为35.2%IACS。  相似文献   

2.
采用非自耗真空电弧熔炼炉制备了Al_(0.3)CrFe_(1.5)MnNi_(0.5)(A_0)、Al_(0.3)CrFe_(1.5)MnNi_(0.5)Ti_(0.2)(A1)和Al_(0.3)CrFe_(1.5)MnNi_(0.5)Si_(0.2)(A_2)等3种高熵合金,然后在700~1 000℃时效处理12h后进行了物相分析、微观组织表征和硬度测试。结果表明,3种合金的铸态组织主要由BCC相组成,时效组织主要由富Cr、Mn、Fe的BCC相、Cr_5Fe_6Mn_8(ρ相)析出相和球形Ni-Al析出相组成。由于Ni-Al相和ρ相析出,使得A_0、A_1和A_2合金的时效硬度(HV)分别达到899、943和955,与A_0合金铸态时硬度相比分别提高了142%、154%和157%。1 000℃时效处理后,A_1和A_2合金的硬度(HV)仍高达800以上,表现出良好的时效硬化特性。  相似文献   

3.
《铸造技术》2017,(3):581-584
对2024合金薄板进行了固溶和时效热处理,研究了时效时间对合金硬度、电导率、力学性能、组织和断口形貌的影响。结果表明,经过固溶和时效处理后,2024合金组织主要由α-Al、Al_7Cu_2Fe和Al_2CuMg相组成。随着时效时间增加,显微硬度先增大后降低,在24h时显微硬度最大。电导率随时效时间延长而提高,时效12~24 h时,电导率增加速度较快,超过24 h后的增加速度变缓。经过490℃×1h固溶+175℃×24 h时效处理后,2024合金可以取得最佳的强度和塑性结合。  相似文献   

4.
形变热处理对Cu-1.0Cr合金组织及性能的影响   总被引:1,自引:0,他引:1  
对Cu-1.0Cr合金依次进行热锻、固溶、冷轧及不同温度和时间下的时效处理,测试了不同状态下合金的硬度及电导率,并进行了微观组织观察.结果表明,在380 ℃时效时,硬度和电导率均随时效时间的延长而升高;在450 ℃时效时,硬度随时效时间的延长明显下降,电导率基本不变.Cu-1.0Cr合金的最佳时效参数为450 ℃时效6 h,获得的硬度(HB)和电导率分别为127和40.08 MS/m.微观组织研究表明,形变热处理后,在Cu基体上出现弥散分布的第二相颗粒;随着时效温度的升高和时效时间的延长,合金发生再结晶,在450 ℃时效时,再结晶使合金硬度显著下降.  相似文献   

5.
研究了时效工艺对轨道交通用Al-Mg-Si系铝合金显微硬度、电导率、力学性能的影响,并分析了合金的显微组织和拉伸断口形貌。研究结果表明:不同时效温度下,合金强度和硬度达到峰值的时间各不同,时效温度越高,合金强度和硬度达到峰值的时间则越短;随着时效时间的延长,合金的强度和硬度均呈先增大后降低的趋势。在不同的时效工艺下,合金的电导率均随时效时间的延长而增大,呈先快速增大后缓慢增大的趋势;时效温度为150~210℃时,合金的电导率随时效温度的升高而增大。时效工艺为170℃×10 h时,合金组织内弥散分布的强化相质点会对位错起到阻碍作用,使合金获得较高强度和硬度,但断口处出现大量韧窝,表现为韧性断裂。轨道交通用Al-Mg-Si系铝合金经540℃×2 h固溶和170℃×10 h时效处理后,其硬度为90.7 HV,电导率为56.5%IACS,抗拉强度为237 MPa,屈服强度为217 MPa,满足客户要求。  相似文献   

6.
用铜模吸铸法成功地合成了由2个固溶体相构成的高熵合金(HEA)Cu_(29)Zr_(32)Ti_(15)Al_5Ni_(19)和相同成分的非晶态合金(HE-BMG)。实验结果表明该成分的高熵合金具有高的非晶形成能力。铸态高熵合金Cu_(29)Zr_(32)Ti_(15)Al_5Ni_(19)的抗压强度为1127 MPa。该合金表现出良好的抗回火性能,经750°C处理2 h后,该合金硬度保持在8260 MPa。  相似文献   

7.
采用金相显微镜、扫描电子显微镜、透射电子显微镜、拉伸试验、电导率测量等分析检测手段研究了7056铝合金铸锭均匀化处理前后的组织及厚板单级时效后的组织和性能。结果表明,7056铝合金铸态组织主要由α(Al)、AlZnMgCu相、MgZn_2相和少量的Al_7Cu_2Fe相组成;110℃、120℃时效8 h~32 h,合金的强度、电导率随时效时间的延长而增加,抗拉强度分别达到655 N/mm2、660 N/mm~2,屈服强度分别达到581 N/mm~2、596 N/mm~2,伸长率可达18%左右;130℃时效8 h合金的强度最高,抗拉强度达到667 N/mm2,屈服强度达到610 N/mm~2,随时效时间的延长,合金强度明显降低,电导率升高。  相似文献   

8.
研究了时效温度和Cr含量对70%冷轧变形的Cu-Ag-xCr合金的硬度、导电性能和耐蚀性能的影响。结果表明,Cu-Ag-xCr合金在450~500℃时效后,其硬度随时效温度增加而降低,随Cr含量增加而升高;时效温度和Cr含量对合金电导率的影响不大;随时效温度升高,合金耐蚀性降低;随Cr含量增加,腐蚀速率降低,耐蚀性提高。Cr含量为0.34%时,在450℃时效2h后,其综合性能较好,电导率为47.02 MS/m,硬度(HV0.1)达到128.34,耐腐蚀性较好。  相似文献   

9.
采用OM、XRD、导电率和硬度测试等分析方法研究了固溶时效工艺对Cu-4Ni-2Sn-Si合金的显微组织及性能的影响。结果表明,热轧态Cu-4Ni-2Sn-Si合金中未溶解的第二相Ni2Si颗粒随着固溶温度的升高逐渐回溶,且发生再结晶,再结晶晶粒逐渐长大。当温度升高至900℃时,第二相粒子基本回溶到合金基体中。经时效处理后,合金的硬度受到析出相与再结晶的交互作用的影响。当时效温度低于450℃时,硬度值随时效时间的延长呈现先增大后减小的趋势;而时效温度升高至500℃时,合金硬度值随时效时间的延长而逐渐下降。而导电率则随时效时间的延长一直保持增大的趋势。热轧态Cu-4Ni-2Sn-Si合金经900℃×1 h固溶处理+68%冷轧变形+450℃×6 h时效处理后获得较优的综合性能,其硬度值为225 HB,导电率为24.5%IACS。  相似文献   

10.
研究了热处理工艺对6061铝合金硬度和电导率的影响。结果表明:固溶处理过程中,随着固溶时间的增加,合金硬度先降低后升高,后又逐渐降低,随着固溶温度的增加,显微硬度值逐渐增大;时效过程中,硬度值随时效时间增加先升高后降低,电导率随时效时间增加逐渐升高并趋于稳定;6061铝合金最佳的热处理制度为540℃固溶4 h+173℃时效11 h,此时合金的硬度值为119.74 HV6,电导率为56%·IACS;对合金电导率影响最大的参数是固溶温度和时效时间,对硬度值影响最大的参数是时效时间。  相似文献   

11.
《铸造技术》2016,(2):233-236
采用光学金相显微镜、SEM、EBSD、DTA分析以及硬度等试验手段,研究了固溶处理对(Mg_(96.5)Zn_(1.5)Er_2)_(99.82)Zr_(0.18)合金组织和力学性能的影响。结果表明,合金铸态及热处理态的微观组织均由α-Mg、X相和(Mg,Zn)_xEr相组成,对铸态的(Mg_(96.5)Zn_(1.5)Er_2)_(99.82)Zr_(0.18)合金进行固溶处理后,(Mg,Zn)_xEr相转变成弥散分布的X相。晶粒尺寸随着固溶时间和温度的增加而变大。与铸态相比,合金热处理后的硬度没有发生太大变化。  相似文献   

12.
研究了时效时间对Cu-0.2Be-0.5Co合金显微硬度和导电率的影响,采用透射电子显微镜(TEM)观察分析了微观组织随时效时间的变化。结果表明:Cu-0.2Be-0.5Co合金在460℃时效条件下显微硬度和导电率随时效时间的变化规律基本一致:时效初期(0~2 h)急剧升高,时效中期(2~4 h)缓慢增加,时效后期(4~8 h)趋于稳定。析出相结构为Be12Co化合物相,与Cu基体的位向关系为[112]α∥[011]Be12Co。析出相的大量析出和弥散分布导致合金硬度的显著增加,由固溶态的97 HV0.1增加至时效2 h后的243 HV0.1;铜基体晶格畸变程度的恢复导致合金导电率显著增加,由固溶态的32.3%IACS增加至时效2 h后的57.1%IACS。在试验范围内,Cu-0.2Be-0.5Co合金经950℃×1 h固溶+460℃×2 h时效处理后综合性能优良。  相似文献   

13.
通过真空熔炼的方法制备了Cu-0.6Zr-0.3Fe合金。采用光学显微镜(OM)、扫描电镜(SEM)、能谱仪(EDS)、X射线衍射和电子万能试验机等对合金的显微组织及元素分布、物相及力学性能进行了分析测试。结果表明:铸态Cu-0.6Zr-0.3Fe合金的晶粒较为粗大,同时晶间存在黑色球状、长条状共晶组织;经930℃固溶处理60 min后的晶粒组织变得细小,并且共晶组织由长条状转变为球状,经30%冷变形及时效后晶粒基本保持着冷轧形貌;时效初期合金的硬度先迅速升高达到峰值,而后随着时效时间的延长开始降低,最后趋于平缓或下降,抗拉强度变化趋势与之相同;在本次实验条件下合金的最佳时效工艺参数为450℃时效120 min,此时其显微硬度、抗拉强度和导电率分别为152.6 HV0.3、495.4 MPa和55.5%IACS。  相似文献   

14.
利用光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、显微维氏硬度计和涡流电导率仪,分析了不同镍锡比对Cu-Ni-Sn-P合金铸态、固溶态及时效态组织和性能的影响,从而优化了Cu-Ni-Sn-P合金中镍和锡元素的成分配比,同时研究了不同形变热处理工艺对Cu-0.87Ni-1.82Sn-0.07P合金组织和性能的影响。结果表明,Ni∶Sn为1∶2时Cu-Ni-Sn-P合金(Cu-0.87Ni-1.82Sn-0.07P合金)的综合性能最佳,固溶时效处理后硬度最高达119.9 HV0.5,电导率为35.0%IACS。时效前经过30%预冷轧变形能提高时效峰值硬度,450 ℃时效后硬度可达164 HV0.5。断口组织多为韧窝,韧性较好,抗软化温度为480 ℃。时效强化析出相与位错为切过关系,析出相呈现为球形Ni-P颗粒;晶界处析出颗粒较大,晶内析出的颗粒普遍较小,尺寸介于几十纳米到数百纳米之间。  相似文献   

15.
采用正交试验法研究了不同热处理对Mg-2.6Nd-0.6Zn-0.5Zr合金微观组织及晶粒度的影响。结果表明:铸态合金主要由镁基体和网状第二相Mg_(12)Nd构成,热处理后合金的晶粒明显长大,由铸态的不规则形状转变为较规则的多边形。通过正交试验法的极差分析得到:随着固溶时间的增加,晶粒尺寸不断增大;随着时效温度或时效时间的增加,晶粒尺寸先减少后增大。热处理参数对晶粒尺寸的影响大小是:固溶时间时效时间时效温度。  相似文献   

16.
利用扫描电镜、透射电镜、金相显微镜及显微硬度仪等研究了Cu-Ni-Si合金在铸态、热轧态、固溶态、冷轧和时效态的显微组织、晶粒取向及大小和析出相的演变过程,分析热轧流程中各类组织及工艺状态对合金性能的影响规律。结果表明:合金成分是影响枝晶偏析和再结晶程度的关键,热轧后晶粒择优取向明显,发生部分再结晶,晶格畸变程度增大,导电率明显下降;随着固溶温度的升高和固溶时间的延长,合金抗拉强度、硬度和导电率均呈下降趋势,合金经900℃、1 h处理后达到最佳固溶效果,?3晶界达到35.2%,大角晶界达到了64.4%,晶粒取向均匀;冷轧后,晶粒被拉长、撕碎,基体产生大量缺陷,为时效析出提供核心作用;冷轧变形量越大,时效析出动力越强,析出相越细小、均匀,综合性能越好;合金在经450℃、3h处理后达到最佳时效效果,硬度为259HV,导电率为36.5%IACS。  相似文献   

17.
采用金相显微镜、扫描电镜、X射线衍射仪、能谱分析仪、导电仪和硬度计,研究了不同热处理工艺对Cu-0.6Cr-0.15Zr-0.12Fe-0.06P合金组织和性能的影响。结果表明:固溶处理后合金电导率、硬度均有所下降;时效处理后,合金电导率快速上升;硬度随时效时间的延长,先升后降;时效温度提高,达到时效硬化峰值的时间就越短,电导率上升的也越快。合金经980℃×2 h+500℃×3 h处理后,电导率可达44.2 MS·m~(-1),硬度可达154.76 HV0.2,软化温度达到603℃。合金析出相主要成分是以Cr为主的(Cr Zr Fe P)化合物和(Cr Zr P)化合物。试验对比了980℃×2 h固溶后时效和未经固溶直接时效两种工艺,发现合金电导率相差不大,但经过固溶处理后合金析出相颗粒分布更均匀,硬度峰值升高18 HV0.2。  相似文献   

18.
高强度高导电性铜-铬合金是一种接触导线用铜合金,含0. 79%Cr、0. 11%Zr、0. 06%La和0. 06%Y(质量分数)。研究了铸态、固溶态、时效态和冷轧后时效态铜-铬合金的显微组织、硬度和导电性能。固溶处理工艺为950℃×60 min水冷,时效温度为400~600℃,时效时间0~360 mm,冷轧变形量20%~80%。结果表明:铸态铜-铬合金的组织为黑色Cr相和含钇和镧的亮白色Cu5Zr相;固溶处理后Cu5Zr相基本回溶于基体,黑色Cr相细小弥散;经60%冷轧变形的合金晶粒沿轧制方向拉长,尺寸约为400μm;时效时间相同,随着时效温度的升高,合金的硬度和电导率均提高;与未经冷轧的时效态铜-铬合金相比,经冷轧变形并时效的合金达到最高电导率的时效时间较短,且冷轧变形60%随后500℃时效60 min的合金硬度明显高于未经冷轧、500℃时效360 min的合金;冷轧变形60%、500℃时效60 min的铜-铬合金中有高密度位错和位错缠结,弥散的纳米级第二相与基体保持共格关系,使合金强化。  相似文献   

19.
采用真空电弧熔炼法熔炼出Al_(0.5)CoCrFeNiTi_(0.5)高熵合金,并在600、800和1000℃下进行真空退火热处理。利用X射线衍射仪(XRD)、光学显微镜(OM)、电子探针(EPMA)、硬度计、万能试验机以及电化学工作站对合金铸态和不同温度退火态的微观组织、硬度、压缩力学性能以及在3.5%NaCl溶液中的耐蚀性进行研究。组织分析表明:铸态和退火态的Al_(0.5)CoCrFeNiTi_(0.5)合金均由富(Cr,Fe)的FCC、富(Al,Ni,Ti)的BCC和σ三相组成,但退火处理使合金的组织形貌和各相的相对含量发生了改变,铸态下的粗大白色FCC柱状晶转变为细小的FCC+BCC+σ的混合组织;随着退火温度的升高,BCC和σ相含量增加。800℃退火态合金成分均匀性最好,1000℃退火态合金由于退火温度过高,组织粗大,元素偏析重新加剧。硬度试验和压缩试验结果表明:合金在铸态和3种温度退火态下的硬度都较高,表现出良好的抗回火软化能力;800℃退火态合金中由于BCC和σ相的增加,其硬度和屈服强度最高,但塑性最差。1000℃退火态合金由于大量σ相的析出以及组织粗大,其屈服强度、断裂强度和压缩形变率都急剧降低。600℃退火态合金具有理想的FCC、BCC和σ相的组成含量,其综合力学性能最好。电化学腐蚀试验表明:铸态和3种温度退火态的合金在3.5%NaCl溶液中都表现出良好的耐蚀性,800℃退火态合金由于其成分均匀性最好,耐蚀性最好。  相似文献   

20.
采用铜模吸铸法制备(Zr_(0.761)Cu_(0.147)Ni_(0.092))_(93-x)Al_(7+x)(x=0,1,2,3,5,7(摩尔分数,%))块体非晶合金,采用同步示差扫描量热仪(DSC)、万能试验机和显微硬度计测试各试样的过冷液相区、压缩塑性和显微硬度,利用X射线衍射(XRD)和扫描电镜(SEM)等手段对其微观结构和力学性能的关系进行分析。结果表明:随着Al含量的增加,(Zr_(0.761)Cu_(0.147)Ni_(0.092))_(93-x)Al_(7+x)非晶合金的玻璃转变温度T_g、初始晶化温度T_x均呈现增大的趋势,而过冷液相区ΔT_x先增大后减小,在x=3时达到最大的94 K。合金塑性变形ε_p随着Al含量的增加先增大后减小,在x=3时达到最大值为15.82%;合金屈服强度σ_s和显微硬度HV都呈现增强的趋势,在x=7时取得最大值,分别为1713和4095 MPa。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号