首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
电网对称故障时双馈感应发电机低电压穿越控制   总被引:4,自引:1,他引:3  
分析电网对称故障时,双馈感应风力发电机定子磁链变化过程、导致定转子过电流的原因、电网故障发生具体时刻及故障程度对双馈感应发电机定转子的影响,提出一种双馈感应风力发电机转子侧变换器低电压穿越控制策略,改善了双馈感应发电机在电网故障时定、转子过电流的情况,实现了双馈感应发电机在电网对称故障时的低电压穿越.在理论分析基础上,建立双馈感应发电机转子侧变换器低电压穿越控制模型和3 kW双馈感应发电机励磁变换器低电压穿越控制实验系统.实验结果表明,所提出的双馈感应发电机低电压穿越控制策略动态响应快、方法行之有效.  相似文献   

2.
双馈异步发电机单相接地故障瞬态特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
为了便于研究DFIG在不对称电压跌落下低电压穿越运行的控制策略,有必要对不对称电压跌落时DFIG的瞬态特性进行研究。基于DFIG定、转子磁链的瞬态变化机理,对DFIG单相接地故障瞬态特性进行研究,推导出了DFIG在发生单相接地故障时的定、转子电流,电磁转矩,输出有功功率与无功功率的解析表达式,并分析得到影响单相接地故障时电磁过渡过程的主要因素。在Matlab/Simulink中搭建了1.5 MW双馈异步发电机单相接地故障仿真模型。仿真结果和解析计算结果高度吻合,证明了推导的解析表达式的正确性和有效性,为双馈异步发电机不对称LVRT控制策略提供了理论基础。  相似文献   

3.
由于双馈风力发电机在电网发生电压跌落故障时存在很大的冲击电流,由此产生冲击的电磁转矩,对发电机本身及其传动机构产生不利的影响,为此必须对双馈风力发电机在电压跌落时的电磁转矩特性进行研究.在考虑定、转子磁链变化的基础上建立了电压跌落时双馈电机的数学模型,研究在发生电网电压跌落故障时双馈发电机的电磁转矩特性.在理论分析基础上,对在电压跌落时双馈电机的转矩特性进行仿真.电压跌落电磁转矩特性的研究,为电压跌落时双馈电机的保护以及低电压穿越的研究提供理论基础.  相似文献   

4.
为了提高电网电压严重骤降故障下双馈发电机低压穿越性能,研究了新型永磁双馈发电机的低电压穿越控制策略。对新型永磁双馈风力发电机结构及电磁关系进行了分析,建立了永磁双馈发电机系统的动态数学模型,针对永磁双馈发电机在电网电压严重跌落时,提出了计及定子励磁电流变化的永磁双馈发电机零转矩控制策略,分别采用传统Crowbar控制和计及定子励磁电流变化的零转矩控制策略进行了对比仿真。仿真结果表明,计及定子励磁电流变化的零转矩控制策略能够改善永磁双馈发电机低压穿越运行能力。  相似文献   

5.
为了研究双馈感应发电机对电网电压跌落的适应能力,以及其实现低电压穿越的功能,文章通过将由向量法求出的瞬态电流与由等效电路法求出的稳态电流进行叠加而得出的定子、转子故障电流的近似解析式,来分析在定子端三相对称电压跌落、转子侧变换器断开、投入Crowbar电路情况下的双馈感应发电机内部的电磁关系变化过程。此外,在理论分析的基础上,文中建立了2 MW双馈感应发电机的PSCAD模型,且在7.5 kW双馈风力发电测试平台上进行了实验验证。仿真和实验结果表明,这种通过瞬态电流和稳态电流进行叠加的方法而求得的双馈感应发电机故障电流的近似解析表达式可以准确地反映出双馈感应发电机磁链和电流的瞬态变化。  相似文献   

6.
电网电压跌落的瞬间,风力发电机定子和转子产生冲击电压和冲击电流,对电网安全造成影响。为实现无刷双馈风力发电机低电压穿越,保证风电机组在电网电压跌落下不间断运行,对电网电压跌落下无刷双馈发电机定子电压和电流进行暂态分析,搭建了无刷双馈发电机在功率绕组静止坐标系下的数学模型,推导并分析了电网电压跌落瞬间其功率绕组磁链、控制绕组电压动态变化过程,并提出一种积分滑模直接功率控制与故障穿越控制相结合的控制策略,完成无刷双馈发电机低电压穿越控制。通过MATLAB/Simulink和半实物仿真试验平台进行验证,仿真和试验结果证明所推导功率绕组磁链和控制绕组电压动态变化过程的正确性及控制策略的有效性,该控制策略有效抑制了定子控制绕组侧电压和电流畸变,提高了无刷双馈发电机的低电压穿越性能。  相似文献   

7.
Crowbar阻值对双馈感应发电机低电压穿越特性的影响   总被引:2,自引:0,他引:2  
研究了Crowbar阻值选取对双馈感应发电机低电压穿越的影响。从功率耗损的角度对Crowbar阻值与定、转子暂态直流磁链的衰减关系进行推导分析;讨论了Crowbar阻值对低电压穿越下双馈感应发电机电磁转矩的影响;提出了通过在Crowbar回路中串联附加电感的方法抑制电压跌落瞬间电磁转矩的振荡。研究表明,过大或过小的Crowbar阻值都将削弱双馈感应发电机低电压穿越能力,Crowbar阻值的选取存在最优值,附加串联电感在一定程度上可以抑制电磁转矩暂态振荡。  相似文献   

8.
针对双馈感应发电机(DFIG)在故障穿越中存在的定转子侧过电流、直流母线过电压、电磁转矩和定子输出功率波动、转子侧变流器(RSC)遭受电流冲击等问题,本文在分析转子侧感应电动势的基础上,提出了电流主动补偿控制策略和RSC被动保护控制策略;两种控制策略分别通过将定子电流主动补偿为转子电流参考值和在转子回路串联动态电流阻抗器(DCR),来解决双馈风机在故障穿越中所存在的问题。所提控制策略提高了双馈感应发电机的故障穿越运行能力。最后,通过仿真验证了所提控制策略的有效性及可行性。  相似文献   

9.
基于虚拟阻抗的双馈风力发电机高电压穿越控制策略   总被引:9,自引:0,他引:9  
电网电压骤升故障会造成双馈感应发电机定子绕组中产生定子磁链的暂态直流分量,甚至引起比电网电压跌落更强的双馈发电机定、转子电流和电磁转矩的冲击。首先分析电网电压骤升下双馈发电机转子电流的电磁过渡过程,在变流器转子电流环中引入虚拟电阻控制,虽然能够有效抑制转子电流和电磁转矩的振荡,但是会引起转子电压过高和转子电流振荡过程加长,仅在低频部分具有抑制作用,因此本文引入虚拟电感,形成虚拟阻抗的改进控制策略,缩短了电网电压骤升时的转子振荡过程,并且对高频部分具有较强的抑制作用,提高了系统的高电压穿越性能。仿真和实验结果验证了所提控制策略的有效性和可行性。  相似文献   

10.
在综合双馈风电机组已有低电压穿越方法的基础上,提出一种双馈风电机组低电压穿越参考功率优化整定方法。在详细分析电压跌落引发crowbar保护动作后的双馈风电机组机电暂态过程的基础上,根据转子运动方程,推导了电压跌落持续期间双馈感应发电机不发生超速脱网的条件,给出了双馈感应发电机参考功率的整定计算公式。基于PSCAD/EMTDC V4.2.0仿真软件,搭建了某型号1.5 MW双馈风电机组的低电压穿越仿真模型。仿真结果表明,在电压跌落持续期间,所提出的参考功率整定方法既能减轻双馈感应发电机转速增加程度,又能使双馈感应发电机向电网发出一定无功功率,进而验证了所提方法的有效性。  相似文献   

11.
针对电网电压跌落时投入现有被动式转子Crowbar保护,只能实现对双馈风电机组的系统保护,而无法实现低电压穿越的不足,提出故障时在定子中串接由电感组成的新型Crowbar。首先从理论上对双馈发电机电压跌落极限下激起的电磁过渡过程进行分析计算,揭示影响电磁过渡过程的本质规律。在此基础上,给出双馈发电机在电压跌落极限下新型Crowbar电感值整定方法及励磁控制策略。理论分析和仿真结果表明,新型Crowbar与控制策略相结合即使在电压跌落极限下,也能够对双馈发电机转子侧变流器提供保护,并向电网提供无功支撑,实现电压跌落极限下低电压穿越。  相似文献   

12.
为了便于研究并网双馈风力发电机组低电压穿越运行的控制策略,有必要对电压跌落时双馈风电机组的暂态特性进行分析.本文利用双馈发电机定转子磁链的暂态变化机理,推导并提出了双馈风电机组在电网电压骤降时的定子暂态电流和电磁转矩的解析表达式.在此基础上,通过对表达式的分析得到影响电压跌落电磁过渡过程的本质因素.在理论分析基础上,为了验证所提电磁过渡过程的正确性,建立了1.5MW双馈电机低电压穿越控制模型,仿真结果表明:电网电压跌落时,双馈电机定子侧电流和电磁转矩与理论分析基本一致,因而可以说明本文电压跌落的分析方法能够正确地反映电压跌落过程中的电磁现象,可以为双馈电机LVRT控制策略的研究提供足够的理论依据  相似文献   

13.
根据当今世界对风能转换系统提出的必须具有低电压穿越能力的要求,研究了电网跌落对双馈风力发电机的影响。在电网跌落时双馈风力发电机运行特点的基础上,分析并提出了一种基于磁链追踪的双馈风力发电系统低电压穿越控制策略,有效地抑制了双馈风力发电机定、转子过电流,保证了变流器的安全运行,实现了双馈风力发电机在电网跌落时的低电压穿越。依据理论分析,建立了双馈风力发电机磁链追踪控制模型,并通过MATLAB/SIMULINK平台进行仿真研究,仿真结果证实了所提控制策略的可行性和有效性。  相似文献   

14.
在电压跌落程度不大的远区非严重故障情况下,低电压穿越控制策略的采用使得双馈风电机组的转子绕组仍由变频器进行励磁。因此,非严重故障情况下双馈风电机组的故障电流特性取决于低电压穿越控制策略下变频器的响应特性。针对此,本文分析了低电压穿越控制策略下转子侧变流器的故障响应特性,得到了转子绕组故障电流的统一计算模型。在此基础上,对非严重故障情况下双馈风电机组的定子绕组故障电流特性进行了研究,建立了定子绕组故障电流的统一解析表达式。数字仿真结果证明了理论分析的正确性。  相似文献   

15.
基于Crowbar的双馈风力发电低电压穿越研究   总被引:2,自引:0,他引:2  
随着风力发电机容量和风电规模的增加,要求双馈感应发电机(DFIG)能够实现低电压穿越(LVRT)能力。在电网电压跌落的对称故障下,针对原有LVRT技术的不足,提出一种采用主动式Crowbar电路的控制策略。在电压跌落后,转子电流突升时,触发Crowbar电路,旁路转子侧变换器;在电流恢复到一定程度时,断开Crowbar电路,使转子侧变换器投入工作。通过有、无Crowbar电路仿真对比表明,该方法可较好地控制转子过电流、母线过电压及电磁转矩的振荡,同时在故障期间向系统输送无功,达到LVRT的要求。  相似文献   

16.
电网对称故障下基于active crowbar双馈发电机控制   总被引:21,自引:0,他引:21  
随着风力发电规模和风电机组单机容量不断增大,要求大型风电机组具有低电压穿越能力,因此需要研究三相对称故障下双馈风力发电机控制方法.在电网电压突然跌落时,由于双馈发电机中的电磁耦合关系,在定转子中感应出过电压过电流,为保护转子侧变换器,需要通过crowbar来短路双馈发电机的转子.针对传统的passive crowbar的不足,采用active crowbar电路的控制方法.当电网故障造成双馈发电机转子过流时,开启active crowbar电路来旁路转子侧变换器.当转子电流下降到一定程度时断开crowbar,转子侧变换器恢复工作,此时双馈电机可以向电网同时提供有功无功支持.理论分析的基础上进行了仿真研究.仿真结果证实了采用active crowbar可以有效地实现双馈风力发电机的低电压穿越.  相似文献   

17.
电网电压不平衡时,双馈感应发电机定、转子电流也会出现较大不平衡,使发电机有功功率、无功功率和电磁转矩发生振荡,危害机组运行。鉴于模型预测控制在大功率变流器中的优越性和多目标约束能力,基于有限集模型预测控制策略对电网电压不对称故障下的双馈发电机多目标控制进行研究。在两相静止坐标系上对双馈发电机建模,并建立其预测方程,以抑制不平衡故障下双馈发电机输出有功功率脉动、无功功率脉动和转矩脉动为目标,提出一种双馈发电机多目标控制策略,增强双馈发电机不平衡故障下稳定运行的能力,同时避免复杂的坐标变换和转子电流指令值计算。在理论分析的基础上,建立11kW的双馈发电机实验平台,通过仿真和实验结果验证该控制策略的有效性。  相似文献   

18.
针对双馈感应风力发电机(DFIG)撬棒保护实现故障穿越的不足,从电网电压跌落期间机组的整体需求出发,提出一种基于定子串联阻抗的DFIG低电压穿越综合控制策略。分析了定子串联阻抗控制策略改善DFIG故障穿越的机理,给出了串联阻抗阻值的整定方法。在转子侧换流器中附加无功补偿控制策略,充分发挥了定子侧的无功支撑能力,加快电网电压的恢复。仿真结果表明:所提的综合控制策略增强了DFIG的故障穿越能力,抑制了转子电流、直流母线电压、电磁转矩的冲击,同时能够满足无功支撑的需求,克服了传统撬棒保护的不足,兼顾了故障结束后机组的稳定运行。  相似文献   

19.
电网发生暂态故障情况下,风力发电机定、转子均会出现过压、过电流等一系列问题,若不采取及时有效的应对措施,会导致风电机组大规模解列,将使电网故障进一步恶化。为防止上述情况出现,提高风电机组应对电网暂态故障的能力,详细分析了电网故障时双馈感应风力发电机的运行特性,提出了一种电网故障条件下转子侧变流器与Crowbar电路的协调控制策略。重点研究了转子侧变流器与Crowbar电路在暂态故障期间状态切换逻辑;在低电压稳态运行期间,提出采用不同故障类型下的相应控制方法,即对称跌落时采用常规PI控制,不对称跌落时采用PIR控制;并给出了整个跌落期间双馈发电机完整的协调控制流程图。最后基于理论分析,研制了40 kW双馈型风电模拟系统,将该系统应用于电力系统动模试验系统进行实验验证。实验结果表明,采用该协调控制策略,在电网暂态故障下,能有效改善双馈发电机定、转子过流、过压的情况,实现了双馈感应发电机在电网故障时的低电压穿越功能。电力系统动模试验系统与真实电网仿真度较高,研究成果对大功率机组增强应对电网故障能力具有重要的参考意义。  相似文献   

20.
《华东电力》2013,(5):962-966
研究了一种双馈风力发电低电压故障穿越控制策略。分析了电网故障时风力发电机的暂态电磁关系和转子的过电流原因。在不改变系统硬件结构情况下,通过对双馈电机转子的励磁控制策略来实现低电压故障穿越控制。建立了双馈风力发电低电压故障穿越控制的数学模型,在电网对称故障和非对称故障条件下,对双馈风力发电低电压故障穿越进行了仿真研究,介绍了仿真结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号