首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善工业煤粉锅炉的NO_x排放特性并保证其燃烧效率,对某新型空气分级燃烧器进行了现场试验.通过改变煤种、过量空气系数及三次风开度,分析了锅炉NO_x及CO排放质量浓度的变化规律,同时采用反平衡法对锅炉的热效率进行了测算.试验结果表明,工业煤粉锅炉能达到较高的热效率;煤中氮含量及挥发分含量与NO_x的生成具有一定的相关性,氮含量越高,NO_x排放质量浓度越高,挥发分含量越低,NO_x排放质量浓度越高;过量空气系数和三次风开度不仅影响锅炉燃烧效率,而且对NO_x排放的影响也较为显著.研究发现,试验锅炉的排烟氧含量(质量分数)应控制在2.5%~2.6%之间较为合理,三次风开度为39%时NO_x排放质量浓度最低.  相似文献   

2.
在20kW下行燃烧炉上进行大同烟煤的空气分级燃烧试验研究,研究了影响空气分级燃烧效果的因素和NO_x的生成与还原路径,分析了不同工况下的飞灰的残余氮含量。结果表明:在不分级燃烧条件下,NO_x的生成量随着过量空气系数的增加而增大,在控制总过量空气系数的条件下,通过提高分级深度或者推迟燃尽风的投入能够进一步降低NO_x生成,但这种降低程度存在上限。空气分级燃烧过程中存在明显的挥发分氮还原现象,同时焦炭氮的析出也受到抑制。  相似文献   

3.
升温速率对神华煤液化残渣燃烧特性与动力学参数的影响   总被引:1,自引:0,他引:1  
周俊虎  方磊  程军  刘建忠  黄振宇  岑可法 《动力工程》2005,25(4):573-576,602
运用TGA/SDTA851热失重分析仪进行了神华煤液化残渣的燃烧特性试验研究。实验表明:神华煤液化残渣的燃烧是分两步进行的,在低温段主要是神华煤液化残渣中挥发性的气体急剧析出,引起燃烧失重;高温段则主要是一些有机质、固定碳的燃烧失重。低温段神华煤液化残渣挥发分含量很高且具有集中析出的特性,在365℃~545℃区间内可挥发物质迅速燃烧完毕;高温段燃烧速率相对较低,半峰宽较大,燃烧不够集中。随着升温速率的增加低温段和高温段燃烧的区分更加明显,且使神华煤液化残渣的燃烧失重增加。此外分析了神华煤液化残渣在一定升温速率下的燃烧特性,利用Free-Carroll法得到神华煤液化残渣燃烧化学反应的动力学参数。图3表4参6。  相似文献   

4.
结合全预混金属纤维表面燃烧器和外部烟气再循环燃烧技术,在350 kW卧式燃气锅炉上进行了实验研究.研究了负荷、过量空气系数和烟气再循环率对CO、NO_x排放和燃烧稳定性的影响.结果表明:负荷变化对NO_x排放无明显影响;过量空气系数越大,NO_x排放越低,但系统热效率随之降低;不采用烟气再循环技术时,NO_x排放低于30 mg/m3时过量空气系数需大于1.73,此时系统热效率低于92.1%;如采用23%的烟气再循环率,实现上述相同NO_x排放水平仅需过量空气系数大于1.3,系统热效率比无烟气再循环时高1.3%;随着烟气再循环率的增大,火焰燃烧不稳定加剧.出现炉膛震动时的烟气再循环率极限值随着负荷的增大而逐渐提高.  相似文献   

5.
天然气在燃烧过程中生成NO_x的浓度主要受温度影响.烟气再循环不仅能降低燃烧温度,而且减小了燃烧高温区域,使污染物排放降低.为减少NO_x排放,采用一台标定功率为800,k W的非预混燃烧器进行了烟气再循环非预混燃烧试验,主要研究了燃烧负荷、过量空气系数、烟气再循环率对NO_x生成的影响.同时,采用FLUENT6.3软件模拟计算燃烧火焰温度分布和NO_x质量浓度分布.结果表明:燃烧器热负荷的增加,会使烟气中NO_x质量浓度增加;过量空气系数?在1.0~1.15之间时,有利于降低NO_x排放;烟气再循环量增加能有效降低NO_x排放,在?为1.1和1.15时、烟气再循环率为20%,时,NO_x质量浓度为40~50,mg/m3.  相似文献   

6.
通过数值模拟研究了在一维燃烧炉上燃用低挥发分煤的条件下,空气深度分级和煤粉细度变化对煤粉燃尽过程和NO_x排放的影响,得到了沿炉膛轴线方向上的温度、氧浓度和NO_x的分布,表明空气深度分级后燃烧后期的氧量增加,炉膛温度水平提高,而煤粉细度的提高使得上述效果更加明显,因而燃烧效率提高和NO_x排放降低,并通过实际燃烧试验验证了数值模拟结果.研究结果表明,对燃用低挥发分煤,采用空气深度分级技术和提高煤粉细度的措施,可以同时取得高效低NO_x排放的效果.  相似文献   

7.
针对小麦秸秆捆燃烧过程中存在的燃烧效率低、烟气污染物排放规律不明确等问题。文章基于多级配风捆烧锅炉开展小麦秸秆捆燃烧试验,通过测试分析不同配风条件下的小麦秸秆捆燃烧特性与烟气排放规律,优化了小麦秸秆捆燃烧过程中的过量空气系数。试验结果表明:当捆烧锅炉的过量空气系数为1.6时,烟气中CO_(2)的质量浓度达到最低,为8 830.14 mg/m^(3),NO和NO的质量浓度也较低,分别为146.67 mg/m^(3)和225.15mg/m^(3);烟气中颗粒物的数量浓度呈单峰分布,质量浓度呈双峰分布,过量空气系数为1.6,1.8和2.0时,烟气中颗粒物的数量浓度和质量浓度均较低。  相似文献   

8.
为降低生物质直接燃烧过程污染物排放,提高燃烧效率,在给料量为12 kg/h的低NO_x生物质粉体燃烧器中进行燃烧实验,探究燃烧温度、过量空气系数(ER)和一、二次风比值对生物质粉体燃烧效率,NO_x、SO_2等污染物生成的影响。实验表明,燃烧效率与温度成正比。在800℃以下时,升高燃烧温度能显著提高燃烧效率;而在800℃以上时,温度对燃烧效率影响不大,但均能达到90%;实验结果还表明,当燃烧温度为800℃,过量空气系数为1.2,且一、二次风比值为60∶40时是实验条件下最佳工况点,此时效率为90.8%,NO_x浓度为282.94 mg/m3,SO_2含量为52.71 mg/m3。  相似文献   

9.
对三种生物质成型燃料在不同气氛下和不同升温速率下进行热重实验,研究反应条件对生物质成型燃料失重特性的影响规律,并对其空气气氛下的动力学特性进行了分析。研究结果表明,生物质在空气气氛下的挥发分析出速率比N2气氛下高,随着温度升高,N2气氛下主要是纤维素、半纤维素以及木质素的分解,而空气气氛下还伴随有其分解产物的燃烧。生物质中挥发分含量较高时,反应活性也比较高。实验温度由室温升至800℃时,在升温速率为10℃/min ~ 25℃/min范围内,随着升温速率的升高,松木热重曲线先向低温区移动再向温度较高的一侧移动,最大失重速率对应的温度也表现出相同规律,当升温速率为20℃/min时最大失重速率对应的温度最低,升温速率为25℃/min时失重峰值最大。动力学特性分析表明,采用2组分动力学模型可以较好地表征生物质在空气中的失重特性,计算结果与实验结果吻合度较高。  相似文献   

10.
在TGA/SDTA851热重分析仪上,以N_2为载气,在气体流速为20 mL/min,升温速率分别为20℃/min、40℃/min、60℃/min和80℃/min,终温1100℃的条件下,进行了煤液化残渣的热解特性研究实验,得到了不同升温速率下神华煤液化残渣热解的TG和DTG曲线,表明神华煤液化残渣的热解是分两步进行的.在低温段主要是神华煤液化残渣中挥发性的气体溢出引起热解失重,在低温度段180~450℃,挥发分迅速释放;高温段则主要是一些高分子有机质的热解过程.此外,研究了粒径对热解特性的影响.研究发现,随着粒径的增加,残渣的最大挥发分释放速率逐渐减小,而最大挥发分释放速率对应的温度逐渐增加.利用Freeman-Carroll法得到煤液化残渣的动力学参数,为煤液化残渣的有效和经济利用提供理论依据.  相似文献   

11.
为了解决现有燃油炉NO_x排放超标的问题,对现有燃油炉的结构进行改造,实施了空气不分级燃烧和分级燃烧对降低NO_x排放的对比性试验。在空气不分级燃烧时,得到O2浓度是影响NO_x的重要因素,可以采用低氧燃烧来降低NO_x的浓度以满足排放要求,并得到不同负荷下低氧燃烧的过量空气系数范围;采用空气分级燃烧时,通过控制一次风α_1和二次风α_2的送入量,使燃油炉NO_x排放的浓度进一步降低以符合国家更严格的排放标准。  相似文献   

12.
运用TGA/SDTA851热失重分析仪进行了神华煤液化残渣的燃烧特性试验研究。实验表明神华煤液化残渣的燃烧是分两步进行的,在低温段主要是神华煤液化残渣中挥发性的气体急剧析出,引起燃烧失重;高温段则主要是一些有机质。固定碳的燃烧失重。低温段神华煤液化残渣挥发份含量很高且具有集中析出的特性,在365℃~545℃区间内可挥发物质迅速燃烧完毕;高温段燃烧速率相对较低,半峰宽较大,燃烧不够集中。随着升温速率的增加,低温段和高温段燃烧的区分更加明显,且使神华煤液化残渣的燃烧失重增加。此外分析了神华煤液化残渣在一定升温速率下的燃烧特性,利用Free-Carroll法得到神华煤液化残渣燃烧化学反应的动力学参数。  相似文献   

13.
在1 000MW机组锅炉上进行了燃烧调整试验,通过改变过量空气系数、机组负荷、燃尽风率和配风方式,对烟气NO_x的排放规律进行了研究。结果表明:随着过量空气系数的增大,NO_x排放浓度显著增大,锅炉排烟热损失呈上升趋势,飞灰含碳量呈下降趋势。锅炉负荷对NO_x排放的影响主要来自燃料量、炉膛温度、氧浓度等多方面因素的综合影响,随着锅炉负荷下降,过量空气系数增大,烟气NO_x排放浓度呈缓慢下降趋势,单位质量燃料的NO_x转化率有所升高。增大炉膛的燃尽风率可显著降低烟气NO_x排放浓度。在燃尽风率较低的燃烧工况下,NO_x排放浓度对燃尽风率的变化尤为敏感。与均等配风方式相比,束腰配风方式可降低炉膛主燃料区的氧浓度,使烟气NO_x排放浓度下降。  相似文献   

14.
为有针对性地进行CFB(循环流化床锅炉)锅炉设计以及优化锅炉运行参数,需了解煤泥CFB燃烧NO_x排放特性及其影响因素。本文通过对一台20 t煤泥循环流化床锅炉进行相应的测试分析,得到NO_x排放浓度随床温和氧量的变化规律。研究结果表明,维持锅炉炉膛过量空气系数1.2,下料层床温由800℃升到935℃的过程中,NO_x浓度由296 mg/m~3上升到341 mg/m~3;维持下料层床温905℃,烟囱中部烟气氧含量由9.3%升到10.5%的过程中,NO_x排放浓度由285 mg/m~3上升至377 mg/m~3。在控制下料层床温和炉膛氧含量这两个参数条件下,可使得烟囱中部NO_x排放浓度水平整体降低,平均排放不高于250 mg/m~3,整体保持在300 mg/m~3以下,符合限定地区污染物排放要求。在一定运行参数范围内,NO_x排放浓度随下料层床温升高而增大,随氧量升高而增大。  相似文献   

15.
为研究煤粉燃烧过程中高温主燃区NH_3对NO_x还原效果的影响,采用尿素溶液为氨基还原剂,利用一维管式电加热沉降炉分析了氨剂对NO_x在不同反应条件下的还原特性。实验结果表明:主燃区温度为1 573 K时,在过量空气系数α≤0.95条件下,尿素溶液可有效的将主燃区烟气中NO_x还原为N_2,且脱硝效率都随氨氮比n增大而快速升高,当n1.75时,脱硝效率升高速度变缓;在还原性氛围中,相同n时,温度越高,脱硝效率越高,且高挥发分烟煤的脱硝效率大于低挥发分无烟煤所对应脱硝效率;试验条件下,神华烟煤的整体脱硝效率最高可达95%;单独喷水可降低NO_x浓度,但与喷氨工况相比,其降低幅度不明显。  相似文献   

16.
层燃炉燃煤特性和煤粉炉燃煤特性差异很大,为了了解过量空气系数对层燃炉NOx析出特性的影响,在层燃单元体炉上进行了不同过量空气系数下煤层表面NOx析出特性的对比实验。发现增大过量空气系数可强化燃烧,加快火焰锋面传递,提高燃烧温度;在挥发分析出阶段促进挥发分析出,增强还原性气氛,抑制NOx生成;在焦炭燃烧阶段提高氧浓度,促进NOx生成,降低了焦炭对NOx还原效果。  相似文献   

17.
空气分级燃烧是一种降低NO_x排放的技术,文中在应用该技术的前提下,对不同过量空气系数下的燃烧工况进行了模拟研究。结果表明,随着过量空气系数的增大:1)烟气在炉内停留时间缩短,气流混合强烈,燃烧条件得到优化;2)炉膛火焰中心逐渐下降,主燃区温度不断升高,而炉膛出口烟温却呈下降趋势;3)主燃区CO浓度明显降低,还原性气氛得到减弱;4)炉膛出口NO_x浓度呈增大趋势。  相似文献   

18.
以多孔喷油器中间布置的热力学单缸直喷汽油机为平台,研究了预混和分层2种喷雾模式在发动机不同负荷的燃烧与排放特性,以及分层稀薄燃烧对发动机最大指示热效率的影响。研究结果表明:在燃烧循环变动系数(COV)不超过3的情况下,分层稀薄燃烧能够显著提高发动机部分负荷的过量空气系数极限,并且能在增压全负荷稀薄燃烧工况提高发动机的燃烧稳定性。在部分负荷(转速为1 500 r/min,平均指示压力(IMEP)为0.2 MPa)过量空气系数λ从1.0提高到1.5,泵气损失降低了26.30%,在2 000 r/min自然吸气全负荷工况,单缸机的最大指示热效率达到44.25%。提高λ,CO排放降低,NO_x排放先升高后降低,HC排放先降低后升高。  相似文献   

19.
用热重分析法,对花生壳与煤以相同比例掺混后在不同升温速率下进行了共燃试验。研究表明,生物质的加入改善了煤的燃烧性能,且随升温速率的升高,着火温度呈下降趋势;各试样的挥发分最大释放速率、固定炭最大燃烧速率、燃尽温度均呈增加趋势,它们的燃烧特性均随升温速率的升高而变好。  相似文献   

20.
应用热分析仪对柠条生物质燃料的燃烧过程进行分析,研究颗粒度、升温速率和风量对燃烧特性与动力学参数的影响。结果表明:(1)颗粒度为0.16 mm试样在升温速率为20 K/min,风量为40 mL/min的工况下,着火温度为221.1℃,最大燃烧速率温度为336.2℃,燃尽温度为559.4℃,最大燃烧速率0.6 mg/min,平均燃烧速率为0.129mg/min,相对于10 K/min和30 K/min升温速率,20 K/min工况下的燃料动力学参数最优,活化能为39.094 kJ/mol,频率因子为2.175×10~7L/min;(2)升温速率的增大会使平均燃烧速率和燃烧特性指数增大,着火温度降低;风量对燃烧速率无影响,但较大风量不利于挥发分析出和燃烧稳定性;颗粒度对挥发分析出有显著影响,颗粒度较大时需较高升温速率和风量才可充分燃烧,而颗粒度较小时即使风量较小也能充分燃烧。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号