首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用热挤压法制备了双尺寸Al_2O_3颗粒增强AZ31镁基复合材料,利用光学显微镜(OM)、扫描电镜(SEM)、维氏硬度仪和电子万能拉伸试验机等研究了Al_2O_3/AZ31镁基复合材料的组织和力学性能。结果表明:经过热挤压后,双尺寸Al_2O_3颗粒均匀地分布在AZ31基体中,通过纳米颗粒对基体位错运动的钉扎作用和微米颗粒对晶粒长大的抑制作用,使复合材料的晶粒被显著细化。相比于单一尺寸,当添加双尺寸Al_2O_3颗粒时,复合材料的力学性能达到最大值,其硬度、抗拉强度和伸长率分别为85 HV、295 MPa和6.8%。  相似文献   

2.
采用搅拌铸造法制备SiC体积分数为5%、10%和15%的颗粒增强AZ91镁基复合材料(SiCp/AZ91)。复合材料经过T4处理后,于350°C以固定挤压比12:1进行热挤压。在铸态复合材料中,颗粒在晶间微观区域发生偏聚。热挤压基本上消除了这种偏聚并有效地改善颗粒分布。另外,热挤压有效地细化基体的晶粒。结果表明:热挤压明显提高复合材料的力学性能。在挤压态复合材料中,随着SiC颗粒含量的升高,基体的晶粒尺寸减小,强度和弹性模量升高,但是伸长率降低。  相似文献   

3.
采用搅拌铸造法制备了不同尺寸的SiCP增强AZ91D镁基复合材料,并对其显微组织和力学性能进行了研究。结果表明,当SiCp加入量为2%,SiC颗粒尺寸为0.5μm时,SiCp/AZ91D镁基复合材料晶粒细小,分布均匀。复合材料的抗拉强度达到150.6 MPa,与AZ91D基体相比提高了57.6%,但伸长率有所降低。  相似文献   

4.
采用粉末冶金法成功制备了不同质量分数碳化钨(WC)颗粒增强的AZ91镁基复合材料,对WC/AZ91镁基复合材料力学性能与微观组织之间的关联性进行了分析。结果表明,加入2wt%WC的镁基复合材料表现出良好的综合性能,其拉伸屈服强度、压缩屈服强度和硬度分别高达365 MPa、453 MPa和115 HB,与AZ91基体合金比较均有不同程度的改善。除此之外,复合材料还呈现出较好的塑性。  相似文献   

5.
采用半固态机械搅拌法制备了B4Cp/AZ91镁基复合材料,研究热挤压对B4Cp/AZ91复合材料力学性能及耐磨性能的影响.结果表明,热挤压能有效改善B4Cp/AZ91复合材料B4C颗粒分布的均匀性.与铸态AZ91镁合金相比,铸态B4Cp/AZ91复合材料的硬度得到了一定程度的提高,而抗压强度和抗弯强度有不同程度的降低;经热挤压后,B4Cp/AZ91复合材料的硬度、抗压强度及抗弯强度都有不同程度的提高.磨损表面形貌显示,添加陶瓷颗粒以及对复合材料进行热挤压处理都能有效的提高其耐磨性能.  相似文献   

6.
采用固相合成方法制备Al_2O_3亚微米颗粒增强AZ31镁基复合材料,利用OM、SEM、TEM对Al_2O_3/AZ31镁基复合材料进行组织观察,利用维氏硬度仪、电子万能拉伸试验机对Al_2O_3/AZ31镁基复合材料进行力学性能测试。结果表明:经过固相合成后,Al_2O_3亚微米颗粒均匀的分布在AZ31基体中,通过对基体位错运动的钉扎作用,使该区域的位错密度增加,促进动态再结晶形核,复合材料的晶粒被显著细化。Al_2O_3/AZ31复合材料的力学性能随着Al_2O_3亚微米颗粒含量的增加而提高,当Al_2O_3颗粒含量为2%时,复合材料的力学性能达到最大值,其硬度、抗拉强度、屈服强度和伸长率分别为83HV、302 MPa、203 MPa和8.15%。  相似文献   

7.
采用粉末冶金法结合热挤压制备了不同质量分数的碳纳米管(CNTs)和石墨烯(GNPs)增强AZ31镁基复合材料。分析了CNTs和GNPs对AZ31镁合金及其复合材料组织、力学性能及物理性能的影响。结果表明:CNTs和GNPs的加入可以细化晶粒尺寸,并且可以提高材料的硬度、拉伸和压缩屈服强度。当同时添加0.5wt%CNTs和0.5wt%GNPs时,复合材料的抗拉强度和抗压强度分别可达到:309 MPa和399 MPa,复合材料的硬度相比基体提升了17.1%。但是复合材料的塑性和导电性相比基体材料降低。  相似文献   

8.
采用球磨加搅拌铸造工艺制备了CNTs(质量分数为0.1%)增强的AZ91D镁基复合材料。通过光学显微镜、X射线衍射仪、傅里叶红外光谱仪、扫描电子显微镜、透射电子显微镜和室温拉伸试验对复合材料进行表征和分析。结果表明:碳纳米管在镁基体中分散很均匀,并且复合在基体中的碳纳米管结构较完整。与AZ91D基体相比,复合材料屈服强度和伸长率分别提高了47.2%和112.2%。碳纳米管在基体中的均匀分散且与基体形成的强界面结合使复合材料屈服强度和伸长率同时得到了提升。此外,晶粒细化和基体中均匀分散的β相(Mg_(17)Al_(12))也有助于复合材料力学性能的提高。  相似文献   

9.
采用触变注射成形的方法制备了石墨烯纳米片(GNPs)增强AZ91D镁基复合材料,利用OM、SEM、EDS、TEM和XRD研究了GNPs含量(0.3%、0.6%、0.9%,质量分数)对镁基复合材料微观组织的影响,并进行了力学性能测试。结果表明,GNPs在基体中呈条状均匀分布,与基体结合良好,GNPs的加入能够细化晶粒尺寸和减少孔隙。与AZ91D镁合金基体相比,GNPs的添加明显提高了复合材料的强度和硬度,当GNPs的含量为0.6%时,复合材料的力学性能最好,硬度和抗拉强度分别达到92.3 HV和245 MPa。  相似文献   

10.
采用粉末冶金法制备了不同配比的Si Cw/AZ91镁基复合材料,并研究了其显微组织和力学性能。结果表明,加入适量的SiCw后,SiCw弥散分布在晶界上,有效提高了镁基复合材料的强度和硬度。  相似文献   

11.
采用原位合成-半固态搅拌铸造法制备了TiB2/AZ31镁基复合材料,研究了热挤压对TiB2/AZ31镁基复合材料组织和力学性能的影响。结果表明:热挤压不仅能显著细化合金组织,而且能有效改善TiB2颗粒分布的均匀性。与铸态AZ31镁合金相比,铸态TiB2/AZ31镁基复合材料的硬度、抗拉强度都有一定程度的提高。经过热挤压后,TiB2/AZ31镁基复合材料的硬度和抗拉强度分别比基体合金提高了126.2%和98.8%,达到950 MPa和322 MPa。磨损表面形貌显示,TiB2颗粒的引入以及对TiB2/AZ31镁基复合材料进行热挤压,都可有效地提高材料的耐磨性。  相似文献   

12.
采用粉末冶金与热挤压工艺制备了包覆MgO碳纳米管增强的AZ91D基复合材料。研究了包覆MgO的CNTs对复合材料力学性能的影响规律,并利用扫描电镜对CNTs/AZ91D复合材料断口形貌进行了观察和分析。结果表明,包覆MgO后的CNTs对AZ91D镁合金有较强的增强效果,当MgO-CNTs含量为3.0%时,CNTs/AZ91D复合材料抗拉强度、伸长率和显微硬度(HV)都达到最大值,分别为256.7 MPa、12.75%和130.86,比基体合金提高了41.44%、41.67%和22.4%。但是,当MgO-CNTs加入量过多时,会因团聚而影响增强效果,复合材料力学性能下降。  相似文献   

13.
采用低温粉末冶金及热挤压工艺制备了具有超细晶组织的0.1%CNTs/AZ91 (质量分数)镁基复合材料。通过SEM、XRD、TEM对镁基复合材料的微观组织进行了表征,并对其室温力学性能进行测试。结果表明:CNTs在复合材料中分布均匀,CNTs的加入使得复合材料的晶粒尺寸从0.552μm细化到0.346μm,并促进了β相的析出,同时弱化了基面织构。复合材料的抗压强度和屈服强度分别达到了617和445 MPa,较基体提高了8.8%和7.2%;其抗拉强度和屈服强度分别达到了393和352 MPa,与基体相比分别提高了4.5%和6.0%。对强化机制进行分析,发现细晶强化和载荷传递是0.1%CNTs/AZ91复合材料的主要强化机制。  相似文献   

14.
纳米SiC颗粒增强AZ91D复合材料的制备及性能   总被引:2,自引:0,他引:2  
利用高能超声辅助法制备纳米SiC颗粒(n-SiCp)增强AZ91D镁基复合材料(n-SiCp/AZ91D),并对其显微结构和室温力学性能进行测试分析。结果表明:纳米SiC颗粒的加入能够起到细化晶粒的作用,纳米颗粒在基体中的分布比较均匀,超声波辅助技术能够有效地分散纳米颗粒,在重力铸造下所制备的复合材料的抗拉强度、屈服强度和硬度均高于基体,尤其是屈服强度较基体提高了57%。  相似文献   

15.
采用纳米级颗粒增强的镁基复合材料可望比微米级复合材料具有更好的力学性能.采用纳米N-SiCp作为增强体,复合粉体经机械合金化、真空热压和热挤压得到了致密的n-SiCp/MB2镁基复合材料.进行了热挤压态组织观察,测试了挤压态复合材料的气孔率、硬度、常温和高温力学性能.结果表明:制备的n-SiCp/MB2复合材料致密且SiCp分布均匀,增强体/基体界面结合良好,基体中无明显的位错,基体晶粒尺寸小于300 nm;复合材料的硬度、常温和高温力学性能比基体合金的高,但塑性下降;复合材料拉伸断口存在韧窝,高温拉伸断口上的韧窝更深.  相似文献   

16.
采用反复塑性变形(RPW)技术,结合挤压工艺制备出SiC颗粒增强AZ31镁基复合材料,研究了循环次数(RPW次数)对SiC_p/AZ31镁基复合材料显微组织和性能的影响.结果表明,反复塑性变形具有明显的AZ31基体晶粒细化、SiC_p细化和分散作用,能显著提高SiC_p/AZ31复合材料的抗拉强度和硬度,并改善其塑性.在SiC_p的体积分数为4%时,经RPW为300次的热挤压后,AZ31基体晶粒粒径达到最小值20 μm,SiC_p被粉碎成3 μm以下的微粒,且弥散分布于合金基体中,复合材料的室温抗拉强度和硬度(HV)达到或接近最大值,分别为359 MPa和107.  相似文献   

17.
结合常温拉伸力学性能、金相组织和三维显微形貌重构结果对AZ91合金的拉伸过程进行了模拟,并与压铸AZ91合金试棒的拉伸力学性能进行了对比研究。结果表明,压铸AZ91合金拉伸断口横截面可见尺寸不等的显微气孔缺陷,且表面的缺陷数量较少,而心部的缺陷数量更多、尺寸更大;拉伸试棒中气孔的存在会在拉伸过程中产生应力集中,进而产生显微裂纹,并最终造成裂纹扩展和断裂;在相同尺寸和间距的缺陷参数下,平行于拉伸载荷方向的气孔相对垂直于拉伸载荷方向的气孔对AZ91合金力学性能的影响小,且在两侧尺寸较小的气孔位置不变前提下,中间气孔尺寸增大会使AZ91合金抗拉强度降低;有限元模拟的力学性能计算值与压铸AZ91合金实测值的误差小于5%,可以对含有内部缺陷的合金拉伸力学性能进行有效预测。  相似文献   

18.
采用挤压铸造工艺制备Mg-Zn-Y准晶增强AZ91D镁基复合材料,研究挤压压力对此复合材料显微组织和力学性能的影响。研究结果表明:挤压铸造工艺是细化晶粒的有效方法,复合材料由α-Mg基体、β-Mg17Al12相以及二十面体Mg3Zn6Y准晶相(I相)组成,且随着挤压压力的增大,β-Mg17Al12相以及Mg3Zn6Y准晶颗粒含量增加,基体晶粒进一步细化,α-Mg树枝晶向等轴晶转变;当挤压压力为100 MPa时,极限抗拉强度和断后伸长率达到最大值,分别为194.3 MPa和9.2%,拉伸断口出现大量韧窝;准晶增强AZ91D镁基复合材料的强化机制主要为细晶强化和准晶颗粒强化。  相似文献   

19.
采用快速凝固/粉末冶金法制备AZ91镁合金,研究了不同挤压比对AZ91镁合金室温力学性能及显微组织结构的影响。结果表明:热挤压后的密度已接近理论值:挤压棒材的抗拉强度和伸长率分别为383.23MPa和9.4%;随着挤压比的增加,晶粒变得细小;合金的抗拉强度、屈服强度和伸长率提高;热挤压态AZ91镁合金室温拉伸时呈现韧性断裂特征。  相似文献   

20.
为了提高AZ91镁合金的力学性能,特别是屈服强度,制备了不锈钢丝增强AZ91复合材料.在相同条件下,分别对AZ91及其复合材料进行热挤压处理.采用金相显微镜(OM)和扫描电镜(SEM)观察了材料的显微组织,通过拉伸实验测试了材料的室温力学性能.研究结果表明:铸态AZ91与钢丝增强AZ91复合材料力学性能接近,但是,二者经过挤压后,其力学性能均有很大提高.其中钢丝增强AZ91镁合金的屈服强度和抗拉强度分别达到了375MPa和428.6MPa,与挤压态AZ91相比,分别提高了50%和20%,同时复合材料的塑性变形量也有显著的提高.讨论了材料的组织、铸造缺陷等对材料力学性能的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号