首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光伏发电大规模并网给电网的稳定运行带来巨大挑战,提高光伏发电功率预测水平对光伏能源并网安全具有重要意义.光伏发电系统功率输出具有明显的非线性、间接波动性和不确定性特点,须采用数学模型结合多尺度预测方法实现较高预测精度.针对多元线性回归算法、马尔科夫链预测、神经网络算法、支持向量机和组合预测等光伏系统输出功率的直接预测方...  相似文献   

2.
煤炭、石油、天然气等不可再生能源的使用,严重降低了空气质量,光伏并网由于可再生、无污染以及资源丰富的特点受到了社会各界人士的喜爱,但是光伏并网发电系统会从许多的不同层面影响电网的电能质量。本文重点分析了分布式光伏发电并网系统,对低压配电网的数学模型进行推导,并且从电路基本理论角度分析光伏配电电源对配电网电能质量产生的作用,发现配电网电压波动与光伏电源容量和短路容量密切相关。  相似文献   

3.
针对目前光伏发电功率预测方法所存在的预测精度较低和不同天气类型适应性较弱的问题,提出一种利用主成分分析(PCA)和遗传算法(GA)改进极限学习机(ELM)的光伏发电功率预测模型(PCA-GA-ELM预测模型)。该模型的计算过程:首先,基于季节因素和天气类型等气象因素对于光伏发电系统的影响,在不同季节下建立了不同的子模型,并利用灰色关联分析法选取同种天气类型下的相似日;然后,利用PCA将多个原始输入变量降维成少数彼此独立的变量;最后,利用GA对ELM的初始权值和阈值进行寻优。此外,文章利用光伏电站的实际发电功率数据对预测模型进行验证。分析结果表明,PCA-GA-ELM预测模型具有较高的预测精度和较强的泛化能力。  相似文献   

4.
针对光伏发电系统短期预测影响因素较多、预测精度较低、稳定度不高等问题,提出一种基于动态时间弯曲(DTW)和变分模态分解(VMD)的粒子群(PSO)优化的BP神经网络光伏发电预测方法。首先使用动态时间弯曲算法对光伏发电功率及影响因素的数据进行测算得到DTW值,再根据DTW值选择对光伏发电功率影响较大的辐射度作为主要影响因素,然后利用变分模态分解将影响因素及光伏发电功率进行分解,降低数据的波动性和非平稳性。运用粒子群优化的BP神经网络对各分量进行预测,然后将预测结果进行叠加,叠加所得结果即为最后预测结果。在Matlab中对该方法和其他神经网络进行算例验证和误差分析,结果表明采用该方法预测结果精度高,稳定性好。  相似文献   

5.
为了更加准确有效地对极地光伏发电功率做出预测,提出一种基于GA-GNNM的极地光伏发电功率预测方法.首先对采集到的气候因素数据以及光伏发电数据中缺失、异常部分进行清洗归一化处理;通过最大相关最小冗余算法(MRMR)选择最佳的气候特征组合,构建多维气候特征数据集;并将其输入到K均值聚类算法中完成不同季节天气类型聚类划分,...  相似文献   

6.
为了准确反映太阳能光伏发电中的光电转换模型,进而预测光伏发电出力,针对辐射、功率的历史数据,通过数据提取、数据过滤,采用相关系数检验、稳健回归等一系列的统计方法,给出了光伏电站动态光电转换建模方法。应用甘肃某光伏电站一年期的历史数据对模型进行测试,结果表明,该转换模型能够较好地反映辐射与功率之间的转换关系。模型在阴天和晴天两种模式下均适用,能较为准确地反映当时的光电转换效率。与原有静态模型比较,该转换模型能够有效提高预测的准确率。  相似文献   

7.
针对光伏发电功率预测精度低的问题,以澳大利亚爱丽丝泉地区某200kW的光伏电站为例,选用遗传算法(GA)优化BP神经网络,采用相关性分析法(CA)确定太阳辐照度、温度、湿度为影响光伏发电功率的主要因子,结合经样本熵(SE)量化的天气类型作为模型输入量,提出CA-SE-GA-BP神经网络的光伏发电功率预测模型。结果表明,多云天气下CA-SE-GA-BP神经网络均方根误差、平均绝对百分比误差分别为4.48%、2.27%,晴天、雾霾、雨天三种天气类型下的预测误差也基本上不超过10%,相较于SE-GA-BP、CA-GA-BP、GA-BP神经网络,CA-SE-GA-BP神经网络预测误差降低,为解决光伏系统发电功率预测提供了一种高效准确可行的方法。  相似文献   

8.
高精度光伏功率预测在光伏并网、电网安全稳定运行中起着重要作用。为获得可靠的预测功率,本文提出了一种基于因果卷积神经网络(Causal Convolutional Neural Network,CCNN)的预测模型。首先,将处理后的特征数据输入到因果卷积神经网络,在每一卷积层中,利用LSTM网络输入门对输入数据去噪,选出重要信息,而后经过1×1卷积核实现信息整合,同时降低运算复杂度,从而构建出CCNN预测模型。最后,采用巴西某发电厂真实数据对模型进行验证,并与人工神经网络(ANN)、LSTM和卷积神经网络(CNN)模型进行对比。结果表明,该方法可以很好地反映时序信息的动态特性,且预测精度优于对照模型,具有一定的实用价值。  相似文献   

9.
随着新能源技术的不断发展,光伏发电因具有绿色清洁、持续长久等优点得到了广泛应用,但同时其输出功率存在间歇性、随机性和突变性等特点,会对电网的稳定性带来负面影响,准确的功率预测对电网的稳定运行至关重要。近几年大数据及人工智能发展迅速,将数字孪生技术与功率预测相结合,可以得到高精度的预测结果。本文提出一种基于数字孪生的功率预测机制,建立数字孪生体实现光伏发电功率预测。该预测方法的推广应用为电网的稳定运行提供了可靠保证,有效提高了功率预测精度,具有很好的应用前景和现实的应用价值。  相似文献   

10.
针对光伏发电中因多种随机因素引起的输出功率不确定性问题,文章结合思维进化算法和BP神经网络算法建立了光伏发电功率的短期预测模型,模型的输入因子为大气温度、辐照度、风速和历史输出序列。根据季节变化采用4个预测单元对预测模型进行训练和电站出力预测,并通过仿真对所提算法的有效性和准确性进行验证。结果表明,MEA-BP模型能有效降低BP网络模型的预测误差。  相似文献   

11.
提高光伏发电功率预测结果的精度对电网规划和调度具有重要意义。基于前向神经网络或回归分析法的传统预测模型因缺乏历史记忆能力而导致自身鲁棒性较差、适应能力较弱。为了解决上述问题,文章提出了一种基于LSTM网络的光伏发电功率短期预测方法。在预处理过程中,文章先将天气类型依据日照晴朗指数量化为具体数值;然后,利用主成分分析法将与光伏发电功率相关性较高的多元数据序列进行降维,得到主成分数据序列;最后,建立基于LSTM网络的光伏发电功率短期预测模型,并将该模型的预测结果与BP网络预测模型和RNN网络预测模型的预测结果进行对比。模拟结果表明,基于LSTM网络的光伏发电功率短期预测模型能较好地反映时序数据的动态特性,预测精度较高,预测结果能够为电力调度部门提供可靠的数据支持。  相似文献   

12.
基于Attention-GRU的短期光伏发电功率预测   总被引:1,自引:0,他引:1  
针对传统长短时记忆神经网络(LSTM)参数量较多以及在处理长时间序列时容易忽略重要时序信息的不足,提出一种结合注意力机制(attention)与门控循环单元(GRU)的Attention-GRU短期光伏发电功率预测模型。首先,基于改进相似日理论建立新的数据集;然后,利用门控循环单元提取光伏发电功率的时序特征,引入注意力机制加强对时序输入中重要信息的关注;最终构建针对不同天气类型的预测模型。仿真结果表明,提出的模型与对比模型相比,预测精度更高。  相似文献   

13.
针对目前光伏发电预测的预测耗时和预测精度不足等问题,提出了一种基于皮尔逊相关性分析、改进的麻雀算法(tGSSA)和深度极限学习机(DELM)的组合预测方法。该方法首先通过皮尔逊相关性分析方法对影响光伏出力的主要因素进行筛选,然后采用黄金正弦搜索策略、自适应t分布和动态选择策略来增强麻雀算法的全局搜索能力和局部寻优能力,最后利用tGSSA群智能优化算法对DELM中的输入权重和偏置进行寻优,在得到最优输入权重和偏置的情况下对光伏发电功率进行预测。以澳大利亚某光伏站一年数据按季节划分后进行预测研究,将本文模型与DELM,SSA-DELM,GA-DELM,ABC-DELM,WOA-DELM进行预测对比,结果表明,相比于其他算法改进模型和传统模型,tGSSA-DELM在预测精度、预测稳定性和工作效率中具有较大优势,具有更强的适用性。  相似文献   

14.
准确预测光伏发电功率有利于并网后电网调度管理,现阶段光伏发电功率预测存在精度较低和对不同天气类型的适应性弱的问题。探索了一种相似日与免疫遗传神经网络(IGA-BP)结合的预测方法:基于天气类型、温度及风速,结合灰色关联度和余弦相似度指标构建气象相似日判别模型;以相似日气象特征向量为输入,建立IGA-BP功率预测模型。利用实测数据对比分析所提IGA-BP模型与GA-BP、BP模型的预测精度,结果为:在不同天气类型下IGA-BP模型具有较高精度,其RMSE平均值为14.142%,TIC平均值为0.017 58,均优于其他对比模型。表明IGA-BP模型能够提高功率预测精度,且具有较高的适应性。  相似文献   

15.
为了较为准确地预测光伏发电功率,提出一种特征融合的功率预测模型。模型首先使用一维卷积神经网络(1-dimensional convolutional neural network, 1D-CNN)提取光伏光电数据深度特征,然后用变分模态分解方法(Variational mode decomposition, VMD)分解数据原特征,再把分解后的特征和深度特征融合,用主成分分析法(Principal component analysis, PCA)提取融合后特征的主成分,最后用Xgboost(Extreme gradient boost, Xgboost)模型进行功率预测。根据对所提模型的实测评估,并与其他预测模型对比,得出基于CNN-VMD-PCA特征融合的预测模型具有较高预测精度,其拟合优度达0.932,能够得到更可靠的功率预测结果。  相似文献   

16.
17.
短期分布式光伏发电功率预测对配电网调度计划的安排及优化具有重要意义。人工智能技术的进步为精细化分析光伏发电功率预测结果的影响因素以及提高光伏发电功率的预测精度提供了有效途径。文章提出一种基于特征筛选与ANFIS-PSO的分布式光伏发电功率预测方法。首先,基于随机森林中的增益情况,对影响分布式光伏发电系统的各项特征参数进行筛选;然后,通过自适应神经模糊推理算法对输入数据进行训练,并使用粒子群算法对ANFIS模型进行优化;接着,建立基于离线训练和在线预测的ANFIS-PSO分布式光伏发电功率预测模型;最后,利用北京某地分布式光伏发电系统的实际数据来验证模拟结果的准确性。  相似文献   

18.
光伏发电功率的准确预测对电网的稳定运行具有重要的意义。针对深度学习训练耗时长和宽度学习特征提取能力弱等问题,将门控循环单元(GRU)与宽度学习系统(BLS)相融合,提出了用于超短期光伏发电功率预测的GRU-BLS模型。先使用GRU训练序列样本,再将所学习到的隐特征作为新的输入特征,最后在BLS中构造特征节点和增强节点以形成最终的特征。所建立的模型在保留深度学习高预测精度的前提下,有效地缩短了模型的训练时间。在实际的光伏发电数据集上进行实验,评估所提模型在不同季节和天气类型下的性能。实验结果表明:与长短期记忆(LSTM),GRU,BLS和LSTM-BLS等模型相比,GRU-BLS的RMSE值降低了23.89%~75.68%,且TIC值和MAPE值也得到了显著改善。  相似文献   

19.
首先通过建立辐照度和功率之间的关系,剔除功率奇异值来完成初步筛选,其次通过计算辐照度、温度、云量等气象因素与发电功率的相关系数,选取相关系数较大的气象因素来评价历史天与预测天的相似度,提取与预测天最相似的历史天作为训练样本来完成二次筛选,最后利用BP神经网络和遗传算法进行光伏发电的功率预测,结果表明该方法具有较高的预测精度。  相似文献   

20.
提出一种考虑时间序列和多特征的光伏发电功率XGBoost联合预测模型.首先,基于偏最小二乘(PLS)提取影响光伏发电功率的多特征;然后,基于XGBoost算法分别建立发电功率的时间序列预测单模型和多特征预测单模型;最后,通过训练线性模型构建了光伏发电功率联合预测模型.使用某地区光伏电厂运行数据验证,结果证明,所提XGB...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号