首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 179 毫秒
1.
以季戊四醇磷酸酯(pentaerythritol phosphate, PEPA)和玻纤为改性剂,制备了季戊四醇磷酸酯/玻纤改性酚醛泡沫. 利用热重分析、极限氧指数、锥形量热仪对泡沫材料燃烧行为进行了分析. 测试结果表明:加入3%的PEPA,改性酚醛泡沫氧指数值增加了38%;加入3%PEPA和1%的玻纤后,改性酚醛泡沫氧指数值增加了26%;PEPA的加入能明显提高改性酚醛泡沫的初始分解温度和残炭量. 与未改性酚醛泡沫相比,PEPA改性和复合改性酚醛泡沫的最初燃烧的热释放速率分别下降47%和36%,热释放总量降低约50%,能有效降低改性酚醛泡沫引起火灾的可能性和火灾危险中的燃烧程度. 同时,PEPA改性和玻纤复合改性能显著降低酚醛泡沫质量损失速率、有效燃烧热量和烟释放速率,从而有效抑制酚醛泡沫燃烧时烟气的产生,降低其火灾危险性.  相似文献   

2.
在酚醛发泡过程中加入不同含量的纳米白炭黑作为成核剂,研究加入不同含量纳米白炭黑对酚醛泡沫密度、吸水率、压缩强度的影响.随着成核剂含量的增加,酚醛泡沫的密度下降,在质量分数为2%时密度达到最小,比未改性泡沫下降了0.01 g/cm3;吸水率是间接考察泡沫泡体结构的宏观表现,成核剂增加,异象成核现象明显,所以,吸水率下降,在质量分数为3%时吸水率最低;因为成核剂属于无机粒子,所以它的加入会提高泡沫的压缩强度,当成核剂质量分数在2%时,压缩强度达到最大,而随着含量继续增加,压缩强度又下降,在质量分数为3%时达到最小;通过氧指数测试可知:成核剂含量的增加并未大幅度改善氧指数;通过TG-DTG分析可知:改性后的酚醛泡沫耐热性能没有下降.  相似文献   

3.
研究在合成阶段加入不同量的三聚氰胺改性酚醛树脂,将改性酚醛树脂制备成改性酚醛泡沫.并通过红外光谱仪、微机控制电子万能实验机、偏光显微镜、氧指数测定仪等仪器进行对比分析.实验表明:改性后的酚醛泡沫的力学性能均有所提高,而游离甲醛含量下降,氧指数升高.其中三聚氰胺质量分数为4.5%时最佳.  相似文献   

4.
酚醛泡沫材料具有很好的保温防火性能,但其也存在一些不足,如强度差、脆性大,影响了酚醛泡沫的使用。文中用硅藻土作为改性剂,对酚醛泡沫材料进行了物理改性,改性后酚醛泡沫材料压缩强度从0.034 MPa提高到0.063 MPa,冲击强度从2.3kJ/m~2提高到4.0kJ/m~2,粉化率从6.1%降至3.4%,硅藻土改性酚醛泡沫在强度方面有明显的改善。极限氧指数达到36%以上,其阻燃性有小幅度改善。  相似文献   

5.
以聚酰胺6(PA6)/季戊四醇磷酸酯(PEPA)(质量比为95∶5)预混物为原料,聚磷酸铵(APP)为添加剂,经双螺杆熔融共混制备PA6/PEPA/APP共混物.通过差示扫描量热仪(DSC)、热失重分析仪(TGA)、极限氧指数仪(LOI)、垂直燃烧测试(UL-94)、锥形量热仪(CONE)来表征共混物的结构与性能.结果表明:以PA6/PEPA预混物为基体,APP添加量以质量分数计为10%时,共混物的LOI值由21%提高到25%;当APP添加量以质量分数计为25%时,共混物的最大热释放速率和总热释放量分别下降了44.3%和20.2%,最大质量损失速率下降了44.1%,残碳质量由2.7%增加到17.6%,提高了PA6的阻燃性能.  相似文献   

6.
ABS/PA6合金的无卤膨胀型阻燃研究   总被引:1,自引:0,他引:1  
以聚磷酸铵(APP)为酸源, 利用ABS/PA6合金中PA6为炭源对ABS/PA6合金进行膨胀型阻燃研究,探讨了不同成炭协效剂与APP复配对合金阻燃性能的影响,这些成炭协效剂包括季戊四醇笼状磷酸酯(PEPA),热塑性酚醛树脂(TPPFR),环氧树脂(EP)和分子筛4A。 结果表明,PA6具有较好的成炭作用, 当APP含量为25%时,阻燃合金体系的极限氧指数可达30,UL-94测定达V-1级别,APP含量为35%时,UL-94测定达V-0级别。而以5wt%的季戊四醇笼状磷酸酯(PEPA)或环氧树脂(E-44)与20wt%APP复配, 或以3 wt%分子筛4A与22wt%APP复配都可以大大提高体系的阻燃性能性和高温下的残炭量, 使阻燃体系氧指数达到30以上, UL-94测定达V-0级别. SEM形貌分析显示体系燃烧表面都形成了膨胀、均匀、致密的炭层结构。  相似文献   

7.
以季戊四醇磷酸酯(PEPA)、三乙醇胺(TEA)为原料,对甲苯磺酸为催化剂,甲苯为带水剂,合成了多组分膨胀型阻燃剂(PTA).以腈纶织物的垂直燃烧损毁炭长为考察指标,考察了三乙醇胺与季戊四醇磷酸酯的质量比、反应时间、催化剂用量、阻燃剂浓度、焙烘温度、焙烘时间等因素对织物损毁炭长的影响.确定了最佳反应条件:m(TEA)m(PEPA)=1.7 1,催化剂用量为季戊四醇磷酸酯和三异丙醇胺总质量的1%,反应温度为136℃,反应时间4 h;在阻燃剂浓度为250 g·L-1、150℃的条件下焙烘2 min,阻燃腈纶织物的阻燃效果显著,达到B1级.  相似文献   

8.
将微波辐射改性胶粉与聚苯乙烯(PS)共混,通过扫描电镜(SEM)、衰减全反射红外光谱(ATR-FTIR)、X射线衍射(XRD)、拉伸和冲击试验等研究改性胶粉/PS共混材料的结构和力学性能。结果表明,当改性胶粉质量分数为8%时,改性胶粉/PS材料的冲击强度比PS的强度提高了183%,共混材料中改性胶粉以橡胶相分散在PS基体中,二者之间界面粘结良好。  相似文献   

9.
ABS/PA6合金的无卤膨胀性阻燃研究   总被引:6,自引:3,他引:3  
以聚磷酸铵(APP)为酸源, 利用ABS/PA6合金中PA6为炭源对ABS/PA6合金进行膨胀型阻燃研究,探讨了不同成炭协效剂与APP复配对合金阻燃性能的影响,这些成炭协效剂包括季戊四醇笼状磷酸酯(PEPA),热塑性酚醛树脂(TPPFR),环氧树脂(E-44)和分子筛4A. 结果表明,PA6具有较好的成炭作用, 当APP含量为25%时,阻燃合金体系的极限氧指数可达29,UL-94测定达V-1级别,APP含量为35%时,UL-94测定达V-0级别.而以5t%的季戊四醇笼状磷酸酯(PEPA)或环氧树脂(E-44)与20%APP复配, 或以3%分子筛4A与22%APP复配都可以大大提高体系的阻燃性能和高温下的残炭量, 使阻燃体系氧指数达到30以上, UL-94测定达V-0级别. SEM形貌分析显示体系燃烧表面都形成了膨胀、均匀、致密的炭层结构.  相似文献   

10.
酚醛树脂具有较好的机械加工性能以及极佳的耐热性能,但是酚醛树脂性脆,韧性差,采用环氧树脂对其进行共混改性可以提高酚醛树脂的韧性,但是会损失一定的热性能. 以碳纤维布作为增强材料,酚醛树脂,环氧树脂作为基体,经过浸渍,层压成型等工艺,制得碳纤维布增强酚醛环氧树脂复合材料. 通过比较不同质量分数的酚醛/环氧树脂质量比所制得的材料的力学性能,热性能及扫描电镜表征出的复合材料的微观结构,得出在环氧树脂质量分数为25%时,该复合材料的弯曲强度达到262.5 MPa,冲击强度达到62.3 kJ·m-2,相对于没有加入环氧树脂的碳纤维布增强酚醛环氧树脂复合材料,分别提高了23%和185%. 热形变温度达到158.8 ℃,相对于没有加入环氧树脂的复合材料减少了13%. 综合来看,环氧树脂质量分数在25%时,碳纤维布增强酚醛环氧树脂复合材料具有最佳的综合性能.  相似文献   

11.
Seven caged bicyclic phosphate compounds were synthesized by using 1-oxo-4-hydroxymethy1-2,6,7-trioxa-1-pho-sphabicyclo[2.2.2] octane(PEPA) as starting material.Within them were three PEPA derivatives containing single caged bicyclic phosphate structure(1a,2a,3a),another three PEPA deviratives containing two caged bicyclic phosphate structures(1b,2b,3b) and one devirative(1c) containing three caged bicyclic phosphate structures.Structures of the products were characterized by FTIR,1H NMR,elemental analysis and TG analysis.The reaction conditions were also discussed.Thermal analysis showed they had high thermal stability and excellent char-forming ability.Besides,these compounds had pentaerythritol bone and flame retardant elements of phosphorus,bromine or nitrogen simultaneously in their molecules,endowed them with good fire retardancy,and made them can be used as intumescent flame retardant.  相似文献   

12.
采用原位法成功合成了摩擦材料用纳米氧化铝纤维改性酚醛树脂.利用示差扫描量热分析(DSC)对合成树脂的固化反应及其动力学进行了研究,结果表明:纳米氧化铝纤维可降低酚醛树脂的固化温度和表观活化能.通过热重分析(TGA)对合成树脂的热性能进行了研究,结果显示,纳米氧化铝纤维对酚醛树脂热性能的影响较小.通过冲击强度测试和断口形貌分析研究了合成树脂的韧性,结果表明,纳米氧化铝纤维对酚醛树脂韧性有显著影响;随着纳米氧化铝纤维含量的增加,改性树脂的冲击强度先增大,后减小,在含量为1.8%时,达到最大值,与纯酚醛树脂相比,提高了约91%.  相似文献   

13.
为了改善聚氨酯硬泡沫的调温能力和阻燃效果,通过在发泡体系中添加相变材料和协效阻燃剂,制得具有相变储能和阻燃功能的聚氨酯硬泡沫.结果表明,聚氨酯硬泡沫的蓄热能力随相变材料含量的增加而增大.在无漏液的条件下,当相变材料与聚氨酯硬泡沫的质量配比为1∶15时,改性聚氨酯硬泡沫的潜热值可以达到29.7 J/g.加入协效阻燃剂后,聚氨酯硬泡沫的氧指数由18提高到30.相变材料的加入可以弥补阻燃剂造成的内部结构缺陷,而阻燃剂的加入可以减缓相变材料造成的力学性能下降,因而改性聚氨酯硬泡沫具有较好的物理化学性能.  相似文献   

14.
采用带有高活性端基的无卤膨胀型阻燃剂(PSPHD)对海泡石纤维(SEP)进行接枝改性,制备了阻燃化海泡石纤维(PSPHD-SEP);通过熔融共混制备了低密度聚乙烯(LDPE)/海泡石纤维阻燃复合材料;通过拉伸试验和冲击试验对LDPE/SEP,LDPE/PSPHD-SEP复合材料进行了力学性能分析;通过氧指数(LOI)以及垂直燃烧(UL-94)对复合材料的阻燃性能进行了研究;利用扫描电镜(SEM)、漫反射-傅里叶变换红外光谱仪(DR-FTIR)对燃烧后的炭层结构和组成进行了表征和分析。结果表明:两组复合材料的拉伸强度和冲击强度随海泡石量的增加呈现先增大后减小的趋势,且在相同添加量条件下,LDPE/PSPHD-SEP体系的拉伸强度和冲击强度更高。阻燃化改性海泡石纤维(PSPHD-SEP)提高了复合材料的阻燃性能,在与聚磷酸铵(APP)、季戊四醇(PER)的复配体系中,当阻燃化改性海泡石纤维添加量达到5%时,复合材料的氧指数达到26.8,垂直燃烧测试达到V-0级。PSPHD促进了炭层与海泡石纤维的交联,形成更加致密的炭层,大幅提高了复合材料燃烧后的残炭量。  相似文献   

15.
本文研究了中空玻璃微珠对全水聚氨酯泡沫性能的影响.研究得出,中空玻璃微珠可使全水聚氨酯泡沫的导热系数由0.031 W/(M·K)降低到0.028 9 W/(M·K).通过扫描电镜研究了KH-550对泡孔结构的影响,研究得出1.0%KH-550改性的玻璃微珠与硬质聚氨酯泡沫塑料基体界面结合得最好.  相似文献   

16.
目的研究胶粘剂对酚醛泡沫板脆性与粉化性的危害,提出通过界面剂处理来阻断胶粘剂对酚醛泡沫板损害的方法.方法采用断裂力和回弹率两种方法测试酚醛泡沫板的脆性,砂纸粉末法测试酚醛泡沫板的粉化度,通过红外光谱研究两种性能变化的原因.结果Ca(OH)2浸泡和胶粘剂粘结后出现紫红色物质均对泡沫板的脆性和粉化性能产生负面影响.经Ca(OH)2浸泡与原样相比断裂力减小,回弹率和粉化度增加,最大差值分别为8.12N、4.61%、3.24%.胶粘剂粘结后酚醛泡沫试样断裂力和回弹率均减小,粉化度增加,最大差值分别为20.58N、7.25%、4.49%.自然晾晒、粘结胶粘剂潮湿养护和Ca(OH)2浸泡的酚醛泡沫板粉化度相对于原样依次增大,最大粉化度分别为12.56%、11.02%、8.91%、8.27%.结论界面剂的使用,有效地阻断了胶粘剂和酚醛泡沫板的直接接触,因此能够降低泡沫板脆性破坏与粉化增加速度,可以应用于工程实践中.  相似文献   

17.
采用分步IPN法合成了一系列聚氨酯/三聚氰胺甲醛树脂互穿网络硬质泡沫,并通过表观密度、压缩强度、弯曲强度、阻燃性能和泡孔结构对其进行了表征。结果表明:随着聚氨酯的加入,泡沫塑料的表观密度降低,并有效提高泡沫塑料的力学性能。但在加入20%的聚氨酯之后,力学性能增加不明显,且泡沫塑料从高难燃材料、难燃材料,向易燃材料转变。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号