首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
为改善磷酸铁锂正极材料的倍率性能, 以乙二醇为溶剂, 采用一步溶剂热法制备磷酸铁锂纳米片。再以葡萄糖为碳前驱体, 对磷酸铁锂纳米片进行炭包覆。通过X射线衍射, N2吸脱附曲线、扫描电子显微镜、透射电子显微镜和循环伏安法等测试方法考察了炭包覆量对磷酸铁锂纳米片结构与电化学性能的影响。结果表明, 制备的磷酸铁锂为具有较短b轴的纳米片状结构, 尺寸约为150 nm×100 nm×60 nm。磷酸铁锂纳米片的倍率性能随炭包覆量的增加而增强, 当炭包覆量为6.4wt%时具有最佳的倍率性能, 在0.2C和10C的电流密度下放电容量分别为157.3和132.6 mAh/g。同时循环稳定性良好, 在5C电流密度下循环500次后容量保持率达到了80.2%。  相似文献   

2.
通过聚苯胺包覆法制备LiFePO4/C,研究了苯胺用量对LiFePO4/C电化学性能的影响。采用X射线衍射(XRD)测试材料结构并用扫描电镜(SEM)和透射电镜(TEM),观察材料形貌及碳层包覆情况。结果表明:该方法制得的LiFePO4结晶度高并且具有规整的球状结构,粒径在50~80nm之间,碳层厚度约为2.5nm。经电化学性能测试发现:在相同合成工艺下,苯胺用量对合成的LiFePO4/C的电化学性能有很大影响.当苯胺加入量为0.5mL时所得LiFePO4/C(6mmol)的电化学性能最佳,0.2C下首次放电比容量可达161.6mAh·g-1,5C下放电比容量可达112.2mAh·g-1,且在5C下循环300次无明显衰减。  相似文献   

3.
李军  黄慧民  魏关锋  夏信德  李大光 《材料导报》2007,21(11):125-126,129
为提高LiFePO4的电化学性能,通过固相合成法制备了掺碳的LiFePO4正极材料,并用XRD、SEM、电化学工作站及充放电测试等对样品的性能进行了研究分析.结果表明,少量的碳掺杂并未改变LiFePO4的晶体结构但显著改善了其电化学性能,LiFePO4/C样品的粒度较小,粒径分布均匀,0.1C首次放电比容量为141.9mAh/g,循环50次后容量下降了11.2mAh/g,以1C倍率首次放电比容量为126.5mAh/g,循环50次后容量保持率为87.2%.  相似文献   

4.
以化学还原法制备了SnSb0.18合金,并对合金的成分、组成及形貌等进行了分析;对合金的嵌脱锂性能研究发现,SnSb0.18合金能与锂形成多种合金,具有良好的嵌脱锂性能,首次循环的库仑效率为74.7%,放电容量可达到611mAh·g-1.研究中还发现热处理能有效地提高电极的循环寿命,增大放电容量,合金电极在氩气保护、300℃温度下处理2h,其40次循环之后比容量仍能保持在440 mAh·g-1.  相似文献   

5.
6.
改进固相法制备LiFePO4/C正极材料及其性能   总被引:1,自引:0,他引:1  
采用改进的固相反应法制备了掺碳的磷酸铁锂正极材料,并用XRD,SEM,元素分析,红外光谱及激光粒度分布仪等对样品进行了测试分析.结果表明,样品具有单一的橄榄石结构和较好的放电平台(约3.4V),粒度较小粒径分布均匀,0.1C首次放电比容量为137.8mAh/g,循环20次后容量保持率为92.6%,以1C倍率首次放电比容量为129.6mAh/g,循环20次后容量下降10.8%.  相似文献   

7.
LiFePO4/C正极材料的液相合成及电化学性能研究   总被引:3,自引:0,他引:3  
采用磷酸三丁酯(TBP)为多功能反应物并添加表面活性剂PEG-4000合成了LiFePO4/C正极材料,利用XRD、SEM、XPS和滴定分析对产品进行了结构、表面形貌和化学组成表征.结果表明在650℃烧结15h所得产物结晶良好,为均匀分布在100nm左右的类球形颗粒.循环伏安曲线显示,该样品具有对称且尖锐的氧化还原电位峰,表明材料具有良好的电化学可逆性.在0.1mA/cm2电流密度下,其首次充放电比容量分别为162和158mAh/g,经100次循环后放电容量损失率仅为3.3%,当充放电密度增加到4mA/cm2时,材料的放电比容量仍然接近100mAh/g,倍率性能优良.  相似文献   

8.
一种合成LiFePO4的新方法   总被引:2,自引:1,他引:2  
结合共沉淀原理和腐蚀电化学原理,提出了一种合成LiFePO4的新方法.对新方法合成路线中的反应物、添加物以及热处理条件作了实验分析,并用XRD分析了LiFePO4的晶体结构和晶粒尺寸分布,用SEM分析了形貌,用充放电测试技术分析了材料的比容量及其电化学性能.结果表明:新方法在合成中不引入其它杂质离子,避免了常规共沉淀合成工艺中过滤.洗涤等过程对LiFePO4前驱体的不利影响.用新方法制备的LiFePO4晶粒分布在20-70 nm,在0.1C下首次放电容量为147 mAh/g.新方法有利于对LiFePO4的Mg2 掺杂改性,明显地提高LiFe1-xMgxPO4的电化学性能.  相似文献   

9.
以Fe2O3为铁源,用环氧树脂对反应前驱体进行包覆,通过固相还原法制备了LiFePO4/C复合正极材料.采用XRD、SEM、循环伏安以及充放电测试等方法对其晶体结构、表观形貌和电化学性能进行了研究.研究结果表明,煅烧温度对材料的电化学性能有较大影响,在700℃煅烧所得产物为单一的橄榄石型晶体结构,粒径分布较均匀,且具有良好的电化学性能.以0.1C倍率进行充放电,其首次放电容量为150.3mAh/g,充放电循环20周后,容量保持率达99.2%;以1.0、2.0C倍率进行充放电,其首次放电容量分别为131.4和122.1mAh/g.其在过充条件下的电性能也佳,过充后还能继续放电,但在过放电条件下,其电性能迅速劣化.  相似文献   

10.
利用碳热还原法合成了Li1-xMgxFePO4/C(x=0.00、0.01、0.02、0.03、0.04、0.05、0.1)正极材料,通过XRD、SEM、BET、CV、EIS和恒流充放电实验研究了不同掺杂量对产物结构和电化学性能的影响。结果表明少量Mg的掺杂未影响到LiFePO4的晶体结构,但显著改善了其电化学性能。其中,Li0.98Mg0.02FePO4/C材料具有更好的电化学性能,0.1C倍率放电时,首次放电容量达到165.2mAh/g,且循环性能良好。另外,对合成材料的红外光谱进行了研究和指认。  相似文献   

11.
采用机械球磨结合微波辐射工艺合成C包覆锂离子电池正极材料LiFePO4/C.通过X射线衍射(XRD)、扫描电镜(SEM)和恒电流充放电测试研究了不同C源和掺C量对样品物相结构、形貌和电化学性能的影响.实验结果表明,微波法可以快速合成LiFePO4/C正极材料;以乙炔黑作为C源,掺杂8%(质量分数)所合成的样品具有最好的电化学性能,在室温下以20mA/g进行充放电测试,其首次放电容量为148.44mAh/g,10次循环后仍有144.74mAh/g,容量保持率为97.51%.  相似文献   

12.
聚苯胺包覆的LiFePO4电化学性能研究   总被引:1,自引:0,他引:1  
采用固相法合成了锂离子电池正极材料LiFePO4.为了改进LiFePO4的高倍率充放电性能,采用原位聚合的方法合成了一系列聚苯胺-LiFePO4(PAn-LiFePO4)复合正极材料.通过扫描电子显微镜(SEM)观察了样品的形貌.交流阻抗测试表明聚苯胺的包覆降低了LiFePO4电极的电化学反应阻抗.充放电测试表明PAnLiFePO4复合材料的放电容量更高,循环性能更好.  相似文献   

13.
以FePO4·4H2O,LiOH·H2O,LiF和柠檬酸为原料,采用一步固相混合烧结法制得F掺杂LiFePO4/C材料,研究了烧结温度和F掺杂量对LiFePO4/C电化学性能的影响。XRD和SEM分析表明,所得样品均为橄榄石型LiFePO4,颗粒粒径在1~2μm。电化学测试表明,LiFePO3.97F0.03/C在0.1C下的初始放电容量为144.7mAh·g^-1,1C放电比容量为123mAh·g^-1且具有良好的循环性能。  相似文献   

14.
新型碳热还原法制备LiFePO4/C复合材料及其性能研究   总被引:8,自引:0,他引:8  
以葡萄糖为碳源,采用一种新的碳热还原法制备LiFePO4/C正极材料.采用TG-DTA、XRD、TEM等手段对前驱体及产物进行了表征,研究了碳热还原的反应历程,测试了样品的电化学性能.结果表明,该碳热还原法可以降低煅烧温度.600℃烧结24h的样品在0.05C下首次放电容量达156mAh·g-1,在0.1、0.2、0.5、1C下首次放电容量分别为146、135、130、121mAh·g-1.该样品在1C下经过30次循环,容量还保持为119mAh·g-1,衰减仅为1.65%.  相似文献   

15.
两种碳源对橄榄石型正极材料LiFePO4性能的影响   总被引:1,自引:0,他引:1  
采用固相反应法在惰性气体气氛下合成了橄榄石型LiFePO4及LiFePO4/C复合正极材料,采用XRD,SEM以及电化学测试等手段对材料进行了结构表征和性能测试.考察了蔗糖、石墨两种碳源对材料性能的影响.XRD结果表明,两种碳源的添加对LiFePO4的晶体结构没有明显的影响;SEM表明,掺杂后,样品的粒径变小;充放电测试表明,和未掺杂的LiFePO4相比掺杂石墨和掺杂蔗糖的LiFePO4具有更好的电化学性能,放电比容量分别为:138.85mAh·g-1和126.2mAh·g-1,高于纯的LiFePO4正极材料的容量90mAh·g-1.经100次循环后,掺杂蔗糖、掺杂石墨及未掺杂的LiFePO4样品的容量衰减率分别为0.02%,1.2%和47%.  相似文献   

16.
通过FePO4的低温还原插锂合成了结晶良好、粒径分布均匀的正极材料LiFePO4纳米粉体.采用XRD、SEM对所得材料的物相结构和表面形貌进行了分析,并系统研究了烧结条件对材料物理和电化学性能的影响.结果表明,提高烧结温度和延长烧结时间都有利于提高产物的结晶度,但会使产物的颗粒长大.600℃下烧结2h所得的LiFePO4表现的电化学性能最佳,首次放电容量可达159mAh·g-1,50次充放电循环后容量几乎无衰减.  相似文献   

17.
以Fe3+为铁源,采用控制结晶技术合成了纳米FePO4.xH2O,将FePO4.xH2O于500℃热处理4 h后得到纳米FePO4前驱体,然后通过碳热还原在不同温度下煅烧合成橄榄石结构的纳米LiFePO4/C样品.采用差热/热重、X射线衍射、扫描电镜、比表面测试、电化学性能测试等分析测试方法对纳米FePO4.xH2O、FePO4前驱体及不同煅烧温度下制得的纳米LiFePO4/C样品进行表征.研究结果表明,700℃烧结10 h合成LiFePO4/C样品的粒径在40~100 nm左右,比表面积为79.8 m2/g;700℃煅烧合成样品在电压2.5~4.2 V,倍率为0.1C、1C、5C、10C、15C时的放电比容量分别达到156.5、134.9、105.8、90.3和80.9 mAh/g,具有较好的倍率性能;样品还表现出较好的容量保持率.  相似文献   

18.
用溶胶-凝胶法和微波法相结合制备了碳包裹的LiFePO4/C材料.XRD、SEM和电化学测试表明:真空干燥下微波18min所得样品为橄榄石型非晶结构,粒径在30~100nm,0.2C充放电的首次放电比容量为120mAh/g,第16次循环的比容量为113mAh/g.  相似文献   

19.
对LiFePO4/C复合前驱体,分别采用静态氮气气氛,动态氮气气氛及静态真空三种烧结方式进行碳热还原合成LiFePO4/C复合正极材料.采用XRD、SEM、CV和充放电循环测试等方法分析和表征材料的结构、形貌和电化学性能.结果表明,烧结方式对所得材料的结晶度、晶粒大小、碳含量、合成温度以及电化学性能均有显著影响.真空烧结所得材料结晶度高,而动态气氛烧结对材料颗粒细化及均匀化都有积极影响,同时也能有效促进锂离子扩散动力学.动态气氛烧结可将材料的烧结温度降低到500℃,且所得材料表现出优异的电化学性能.0.5C倍率下循环首次放电比容量达到163.4 mAh/g,50次循环后容量保持率为99.02%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号