首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用Yb部分替换Al-0.2Sc-0.04Zr合金中Sc,通过对其室温硬度、拉伸性能和电阻率测试,研究了Al-(0.2-x)Si-xYb-0.04Zr合金的力学性能和导电性能。结果表明,合金具有明显的时效强化行为。Yb含量为0.05%、0.10%和0.15%的合金峰时效温度在330℃附近,而不含Sc的Al-0.2Yb-0.04Zr合金峰时效温度在280℃;相应的峰时效态抗拉强度分别为155、140、104和85 MPa。Yb(部分)替代Sc虽然降低了Al-0.2Sc-0.04Zr合金的力学性能,但提高了其导电性。综合力学、电学性能,尤其是成本因素发现,Al-0.1Sc-0.1Yb-0.04Zr合金在耐热导电材料领域最具应用前景。  相似文献   

2.
研究了Al-0.2Sc0.04Zr(0.01B)合金的时效行为和导电性.发现合金最佳时效温度为330℃,最佳时效时间为189min.热挤压并不能进一步提高合金的最佳强度水平,但能大幅提高合金的伸长率;添加B虽使合金最佳时效强度水平略有降低,但能改善均匀化状态合金的低温导电性.综台结果表明,挤压态Al-0.2Sc-0.04Zr合金具有最佳的力学性能和导电性,其抗拉强度为160 MPa,20℃时导电性相当于国际标准软铜的63%.  相似文献   

3.
通过硬度测试、电导率测定、金相显微镜观察等方法,确定合金的固溶工艺为600℃×24h水淬。经过高温时效处理后发现Al-0.2Sc-0.04Zr、Al-0.15Sc-0.07Zr、Al-0.1Sc-0.05Zr三组合金在300℃时时效465min后强化效果最佳。通过对比高温时效处理后不同Sc-Zr含量的Al-Sc-Zr合金的力学性能发现:Sc的添加,可以有效的增加合金的强度,在一定范围内,Sc含量越多,强度提升越明显。微量Zr元素能够有效抑制初生Al3Sc沉淀粒子的形成,从而使合金延伸率上升。综合结果表明,时效处理后Al-0.2Sc-0.04Zr的力学性能较好,其抗拉强度、屈服强度、延伸率分别为229.626MPa、97.707MPa、11.8%。  相似文献   

4.
研究了Al-xSc-0.04Zr(x=0,0.1,0.2、0.4)合金时效强化行为和导电性,发现只有当Sc含量高于0.2%时,合金才具有较小的晶粒尺寸和显著的时效强化效应.合金的最佳时效强化温度区间为280~380 ℃.在均匀化态,随着Sc含量的增加,Al-Sc-Zr合金电阻率增加,电阻温度系数降低;380 ℃时效导致合金电阻率显著降低.综合结果表明,Al-0.2Sc-0.04Zr合金最有可能成为新型超耐热铝合金导线材料,其时效后的屈服强度和抗拉强度分别为80和140 MPa,电阻率在20 ℃仅比高纯Al高2.6%,而且随着温度升高,该差别还会逐渐减小.  相似文献   

5.
在前期工作基础上,研究了经不同冷轧和时效处理的Al-0.2Sc-0.04Zr合金在300℃时的蠕变行为。发现合金的高温蠕变属于第二相粒子强化材料的蠕变,存在蠕变门槛应力,且冷轧和时效联合处理能进一步改善合金高温抗蠕变能力。虽然预时效+冷轧+再时效处理可获得更好的室温抗拉强度,但未经预时效的冷轧+时效处理却可获得好的高温抗蠕变性能。显微组织观察表明,Al-0.2Sc-0.04Zr合金抗蠕变性能的改善与晶粒细化和共格Al3(Sc,Zr)沉淀相的形成及分布有关。  相似文献   

6.
研究了不同预处理(均匀化、峰时效和热挤)和冷轧真应变对Al-0.2Sc-0.02Zr-0.02Yb合金力学性能的影响。结果发现,冷轧并不改变合金峰时效温度(330℃)。3种预处理+冷轧+时效合金的力学性能均随冷轧真应变增加而增加,近似满足Hollomon公式,并拟合得到了相应的强化系数和强化指数。对3种预处理+冷轧+峰时效合金而言,均匀化预处理后强化指数(n)最大,热挤次之,峰时效预处理的最低。而对均匀化+冷轧+时效合金,随着时效温度升高,强化指数先增大后减小,在280℃达到最大值。  相似文献   

7.
采用活性熔剂保护熔炼、水冷铜模激冷铸造制备Al-5.8Mg-0.4Mn和Al-5.8Mg-0.4Mn-0.25Sc-0.1Zr(质量分数,%)两种合金铸锭。合金铸锭经热轧中间退火冷轧成2 mm薄板;研究稳定化退火及微量Sc和Zr对Al-Mg-Mn合金组织与性能的影响。结果表明:在Al-Mg-Mn合金中加入微量Sc和Zr后形成大量弥散的Al3(Sc,Zr)粒子,这些粒子对位错和亚晶界具有强烈的钉扎作用,能明显提高合金的抗再结晶能力和室温力学性能;Al-Mg-Mn-Sc-Zr合金板材经300℃退火1 h后可获得最佳综合力学性能,其σb、σ0.2与δ分别为436 MPa、327 MPa和16.7%。  相似文献   

8.
为了获得既有良好力学性能又有较高导电性能的铝导线,采用连续流变挤压技术制备出直径为9.5 mm的Al-0.16Zr、Al-0.16Sc、Al-0.12Sc-0.04Zr(质量分数,%)和高纯铝(99.996%)4种铝导线,随后对3种铝合金导线进行热处理,并进行分析测试。结果表明:向高纯铝中单独添加0.16%Sc和0.16%Zr可以提高铝导线的抗拉强度,降低铝导线的导电性能。在高纯铝中添加0.12%Sc和0.04%Zr的合金也具有相同的规律。经过热处理,Al-0.12Sc-0.04Zr铝合金导线可以达到抗拉强度和导电率的最优综合性能:抗拉强度为160 MPa,导电率为64.03%(IACS)。  相似文献   

9.
采用电阻炉熔炼了Al-7.2Zn-2.2Mg-1.8Cu-0.2Zr和Al-7.2Zn-2.2Mg-1.8Cu-0.2Sc-0.2Zr两种铝合金,在700~720℃挤压铸造成形,并经过465℃×24h+475℃×8h水淬+120℃×24h时效热处理。结果表明,Sc、Zr的复合添加能明显细化α-Al基体和晶间第二相;通过多级固溶和时效处理,显著提高了合金的力学性能,铸件的抗拉强度达到613MPa,屈服强度达到528 MPa,伸长率为6%。  相似文献   

10.
制备了成分为Al-5Mg-(0.10~0.30)Sc-(0.05-0.15)Zr的合金,测试了其不同状态下的拉伸力学性能σb、σ0,2和δ,采用金相显微镜,透射电镜观察分析了其不同状态下的显微组织结构。结果发现:微量Sc、Zr的添加明显提高了Al-Mg合金的强度,细化了合金铸锭组织的晶粒尺寸,抑制了合金形变组织的再结晶,合金在热轧-冷轧后130℃3h退火得处理得到最佳力学性能,σb=406MPa,σ0.2=308MPa和δ=15%。  相似文献   

11.
用形变热处理工艺的时效时间、时效前和时效后冷变形程度作为3个影响因素并取不同水平,对Cu-1.2Cr-0.2Zr-0.04Mg-0.02RE合金进行了L9(34)正交试验.研究结果表明,影响导电率的主要因素是时效时间,影响抗拉强度的主要因素是时效后冷变形程度;并确认此合金的最佳工艺为:950 ℃×1.5 h固溶→冷轧80%→470 ℃×2 h时效→冷轧60%.Cu-1.2Cr-0.2Zr-0.04Mg-0.02RE合金经最佳工艺处理后的导电率、抗拉强度和伸长率分别为76.6%IACS、617.93 MPa和8.1%.  相似文献   

12.
戴晓元  夏长清  龙春光  彭小敏 《铸造》2007,56(9):991-994
采用铸锭冶金法制备了Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr、Al-9.0Zn-2.5Mg-1.2Cu-0.12Sc-0.15Zr和Al-9.0Zn-2.5Mg-1.2Cu-0.20Sc-0.15Zr三种合金,采用金相显微镜、扫描电子显微镜和透射电子显微镜,研究了三种合金铸态及不同热处理状态下的显微组织,测试了不同热处理状态下合金的力学性能。结果表明,Sc含量增加可以提高Al-Zn-Mg-Cu-Zr合金的抗拉强度和伸长率,Al-9.0Zn-2.5Mg-1.2Cu-0.15Zr-0.20Sc经固溶和T6处理后,抗拉强度达到774.6 MPa,伸长率为8.3%。其作用机理主要为Sc含量增加,使合金中Al(3 Sc,Zr)引起的细晶强化、亚结构强化和弥散强化更进一步加强。  相似文献   

13.
采用热压缩试验和电子显微分析方法研究Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr (质量分数,%)合金的变形行为和显微组织特征。结果表明,在最大加工效率条件(673 K,0.01 s-1)下变形时,Al-6.00Mg、Al-6.00Mg-0.10Zr和Al-6.00Mg-0.25Sc-0.10Zr合金的位错密度分别为2.68×1016、8.93×1016和6.1×1017 m-2;其动态再结晶分数分别为19.8%、15.0%和12.7%。中心点平均取向差(KAM)分析表明,通过添加Zr或Sc+Zr,Al-Mg合金晶界附近的位错密度增加。此外,基于动态材料模型(DMM)建立的热加工图表明,添加Zr或Sc+Zr能减小Al-Mg合金的低温不稳定域的范围,但会增大高温和高应变不稳定域的范围。实验结果进一步证明,在变形条件下,仅Al-6.00Mg-0.25Sc-0.10Zr合金在773 K和1 s-1时开裂。  相似文献   

14.
采用大气熔炼铸造及热变形方法制备了Al-4.5Cu-1Li-0.7Mg-1Zn-0.3Ag-0.3Mn-0.2Zr新型铝锂合金板材。通过维氏硬度、拉伸性能、扫描电镜、透射电镜等方法,研究了固溶后不同冷轧预变形量对显微组织和力学性能影响。结果表明,时效前的冷轧预变形量有效促进了新型铝锂基体合金中T1(Al2CuLi)相的析出与均匀分布,减少了θ′(Al2Cu)相的体积分数。冷轧预变形量的增加,缩短了峰时效时间,晶界析出相由连续析出变为非连续析出,无沉淀析出区宽度变小。当冷轧预变形量为15%时,时效态合金的屈服强度与抗拉强度分别达到了668 MPa、690 MPa,延伸率保持在7.9%。  相似文献   

15.
试验研究了Sc和Zr复合微合金化对Al-4Cu-1.5Mg合金铸态显微组织与力学性能的影响规律。结果表明,复合添加微量Sc和Zr,有效改善了合金铸态微观组织,细化了合金晶粒,使粗大的树枝晶转变为均匀细小的等轴晶。当Sc、Zr含量分别为0.4%和0.2%时,合金的抗拉强度、屈服强度及伸长率分别为275.0MPa、176.0MPa和8.0%,与未添加合金元素的Al-4Cu-1.5Mg合金相比,抗拉强度提高了55.3%,伸长率提高了近3倍。  相似文献   

16.
黄月兰 《铸造技术》2015,(3):614-616,621
基于Bayes方法研究了Al-5.2Mg-0.7Mn-0.20Sc-0.1Zr合金的平面应变断裂韧度。结果表明,Al-5.2Mg-0.7Mn-0.20Sc-0.1Zr合金热轧板在L-T和T-L取向KIC值分别为32.66和32.03 MPa·m1/2,平面应变断裂韧度各向异性差别较小。  相似文献   

17.
Ag和Zr对Cu-Ag-Zr合金组织和性能的影响   总被引:2,自引:0,他引:2  
用中频熔炼-铁模激冷铸造-热轧-冷轧-热处理工艺,制备了Cu-3Ag、Cu-0.2Zr和Cu-3Ag-0.2Zr三种成分的中强高导电铜合金.通过硬度、拉伸性能和电导率测试、金相与电子显微分析等方法,研究了固溶-时效工艺对上述合金力学性能、导电性能及其组织结构的影响和变化规律.结果表明,Ag和微量Zr的添加以及时效前的预冷变形能较显著提高铜的力学性能而不明显降低其导电性;Cu-Ag-Zr合金的高强度来源于Ag的固溶强化、β-Ag与铜锆化合物粒子的析出强化;高导电性则来源于合金在时效过程中大部分Ag和Zr分别以β-Ag与铜锆化合物粒子的形式析出,合金基体接近为高导电性纯铜.  相似文献   

18.
结合半固态加工基本原理利用热力学计算方法设计出了新型半固态铝合金主成分Al-6%Si-2%Mg,利用实验方法优化选择了微量元素Zr、Sr。结果显示,合金中Zr含量为0.10 ̄0.14%,Sr含量为0.02 ̄0.04%的新合金AlSi6Mg2表现出良好的半固态组织和力学性能。  相似文献   

19.
采用铸造、冷轧和T6热处理制备了SiO2气凝胶(SA)增强铝基复合材料。研究了SA含量对Al-4Cu-0.1Sn合金显微组织(铸态与冷轧T6态)与力学性能的影响。结果表明,SA能有效地加入到Al-4Cu-0.1Sn合金中,并以球状形式均匀的分布在晶粒内部。铸态下,随着SA含量的增加,合金的显微硬度呈上升趋势。当SA含量为0.02%时,合金平均硬度(HV)达到最高85,相对于未添加SA的合金提升了49%,但铸态下添加SA的合金拉伸性能略微下降;冷轧T6态下,当SA含量为0.02%时,合金硬度(HV)为138。随着SA增加,合金的屈服强度与抗拉强度先升高后降低,当SA含量为0.04%时,合金屈服强度达到320 MPa,抗拉强度达到401MPa,相比于未添加SA的合金提升了10.3%和10.7%。添加SA能够提高铸态Al-4Cu-0.1Sn合金硬度的机理是其细化了铸态合金的晶粒,并使晶界处第二相由粗大的骨骼状变成细小的非连续状。添加SA提高冷轧T6态强度的机理是细化了Al2Cu相并消除了Al7Cu2Fe相。  相似文献   

20.
采用维氏硬度测试、拉伸性能测试、透射电子显微镜(TEM)研究3种石油钻杆用Al-Zn-Mg-Cu系合金(合金A:Al-6.9Zn-2.3Mg-1.7Cu-0.3Mn-0.17Cr,合金B:Al-8.0Zn-2.3Mg-2.6Cu-0.2Zr,合金C:Al-8.0Zn-2.3Mg-1.8Cu-0.18Zr)的显微组织和力学性能。结果表明,经(450℃,2 h)+(470℃,1 h)固溶处理及120℃时效12 h后,A、B和C3种合金的抗拉强度、屈服强度和伸长率分别达到736 MPa、695.5 MPa和7%;711 MPa,674 MPa和12.5%;740.5 MPa,707.5 MPa和13%。合金A的强化相为细小弥散分布的GPⅡ区和η'相;合金B的强化相为η'相;合金C的强化相为GPⅠ区、GPⅡ区和η'相,这是合金C具有较佳综合性能的原因。增加Zn含量有利于提高合金强度;增加Cu含量使合金强度略有下降,伸长率上升;增加Mn含量使合金基体内形成尺寸较大的第二相粒子,从而导致合金塑性的降低。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号