首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Local electrical characterization of epitaxial graphene grown on 4H-SiC(0001) using electrostatic force microscopy (EFM) in ambient conditions and at elevated temperatures is presented. EFM provides a straightforward identification of graphene with different numbers of layers on the substrate where topographical determination is hindered by adsorbates. Novel EFM spectroscopy has been developed measuring the EFM phase as a function of the electrical DC bias, establishing a rigorous way to distinguish graphene domains and facilitating optimization of EFM imaging.  相似文献   

2.
If graphene is ever going to live up to the promises of future nanoelectronic devices, an easy and cheap route for mass production is an essential requirement. A way to extend the capabilities of plasma-enhanced chemical vapour deposition to the synthesis of freestanding few-layer graphene is presented. Micrometre-wide flakes consisting of four to six atomic layers of stacked graphene sheets have been synthesized by controlled recombination of carbon radicals in a microwave plasma. A simple and highly reproducible technique is essential, since the resulting flakes can be synthesized without the need for a catalyst on the surface of any substrate that withstands elevated temperatures up to 700?°C. A thorough structural analysis of the flakes is performed with electron microscopy, x-ray diffraction, Raman spectroscopy and scanning tunnelling microscopy. The resulting graphene flakes are aligned vertically to the substrate surface and grow according to a three-step process, as revealed by the combined analysis of electron microscopy and x-ray photoelectron spectroscopy.  相似文献   

3.
We present a facile approach to transform multilayer graphene to single-layer graphene in a gradual thinning process. Our technique is based upon gradual etching of multilayer graphene in a hydrogen and nitrogen plasma environment. High resolution transmission microscopy, selected area electron diffraction and Raman spectroscopy confirm the transformation of multilayer graphene to monolayer graphene at a substrate temperature of ~ 400?°C. The shift in the position of the G-band peak shows a perfect linear dependence with substrate temperature, which indicates a controlled gradual etching process. Selected area electron diffraction also confirmed the removal of functional groups from the graphene surface due to the plasma treatment. We also show that plasma treatment can be used to engineer graphene nanomesh structures.  相似文献   

4.
Molecular beam epitaxial growth of GaAs nanowires using Au particles as a catalyst was investigated. Prior to the growth during annealing, Au alloyed with Ga coming from the GaAs substrate, and melted. Phase transitions of the resulting particles were observed in?situ by reflection high-energy electron diffraction (RHEED). The temperature domain in which GaAs nanowire growth is possible was determined. The lower limit of this domain (320?°C) is close to the observed catalyst solidification temperature. Below this temperature, the catalyst is buried by GaAs growth. Above the higher limit (620?°C), the catalyst segregates on the surface with no significant nanowire formation. Inside this domain, the influence of growth temperature on the nanowire morphology and crystalline structure was investigated in detail by scanning electron microscopy and transmission electron microscopy. The correlation of the nanowire morphology with the RHEED patterns observed during the growth was established. Wurtzite GaAs was found to be the dominant crystal structure of the wires.  相似文献   

5.
The effects of Pb intercalation on the structural and electronic properties of epitaxial single‐layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X‐ray photoelectron spectroscopy, and angle‐resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π‐bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of Pb? Si chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole‐doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene‐capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.  相似文献   

6.
In the context of investigations of physical, chemical and electrical properties of ultra-thin layers of epitaxial and monocrystalline Sr(0.3)Ba(0.7)O on Si(100), we also investigated their thermal stability with x-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (EELS), and low energy electron diffraction (LEED). At temperatures above 400?°C, transformation into silicate layers sets in. The stoichiometry after complete transformation was determined to be close to (Ba(0.8)Sr(0.2))(2)SiO(4) except for layers of only a few monolayers, where the silicate is not stoichiometric. There are strong indications that this silicate is stable until it desorbs at temperatures above 750?°C. Crystallinity, as seen with LEED, is lost during this transformation. Although transformation into silicate is coupled with metal desorption and compactification of the layers, they seem to remain closed. In addition, traces of Ba silicide at the Si interface were detected after layer desorption. This silicide cannot be desorbed thermally. The silicate layer has a bandgap of 5.9 ± 0.2 eV already for 3 ML thickness. Upon exposure to air, carbon and oxygen containing species, but no hydroxide, are formed irreversibly.  相似文献   

7.
Thin sputtered cobalt films on SiC were annealed in an Ar/4 vol% H2 atmosphere at temperatures between 500 and 1450 °C for various times. The reaction process and the reaction-product morphology were characterized using optical microscopy, surface profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The relative adhesive strength between the film and substrate was determined by the scratch test method. Below 850 °C sputtered cobalt with a thickness of 2 m on SiC showed no detectable reaction products. Cobalt initially reacted with SiC at 850 °C producing Co2Si and unreacted cobalt in the reaction zone. At 1050 °C the first-formed Co2Si layer reacted to CoSi, and carbon precipitates were formed in the reaction zones. Sputtered thin cobalt layers reacted completely with SiC after annealing at 1050 °C for 2 h. Above 1250°C only CoSi was observed with carbon precipitates having an oriented structure in the reaction zone. Above 1450°C, a significant amount of graphitic carbon in the reaction zone was detected.  相似文献   

8.
Post-growth transfer and high growth temperature are two major hurdles that research has to overcome to get graphene out of research laboratories. Here, using a plasma-enhanced chemical vapour deposition process, we demonstrate the large-area formation of continuous transparent graphene layers at temperatures as low as 450?°C. Our few-layer graphene grows at the interface between a pre-deposited 200 nm Ni catalytic film and an insulating glass substrate. After nickel etching, we are able to measure the optical transmittance of the layers without any transfer. We also measure their sheet resistance directly and after inkjet printing of electrical contacts: sheet resistance is locally as low as 500 Ω sq?1. Finally the samples equipped with printed contacts appear to be efficient humidity sensors.  相似文献   

9.
Gaire C  Snow P  Chan TL  Yuan W  Riley M  Liu Y  Zhang SB  Wang GC  Lu TM 《Nanotechnology》2010,21(44):445701
The morphology and biaxial texture of vacuum evaporated CaF(2) films on amorphous substrates as a function of vapour incident angle, substrate temperature and film thickness were investigated by scanning electron microscopy, x-ray pole figure and reflection high energy electron diffraction surface pole figure analyses. Results show that an anomalous [220] out-of-plane texture was preferred in CaF(2) films deposited on Si substrates at < 200?°C with normal vapour incidence. With an increase of the vapour incident angle, the out-of-plane orientation changed from [220] to [111] at a substrate temperature of 100?°C. In films deposited with normal vapour incidence, the out-of-plane orientation changed from [220] at 100?°C to [111] at 400?°C. In films deposited with an oblique vapour incidence at 100?°C, the texture changed from random at small thickness (5 nm) to biaxial at larger thickness (20 nm or more). Using first principles density functional theory calculation, it was shown that [220] texture formation is a consequence of energetically favourable adsorption of CaF(2) molecules onto the CaF(2)(110) facet.  相似文献   

10.
The growth of a silver deposit on a palladium substrate was investigated by Auger spectrometry and electron microscopy. The substrate was a thin film obtained by epitaxial growth on cleaved NaCl. The substrate temperature was varied in the range 100–200°C. In the first stage of growth, the Auger signals are consistent with the formation of two successive monatomic layers followed by the nucleation and growth of flat three-dimensional crystallites. The electron diffraction investigation shows that the first two monolayers are pseudomorphic to the substrate and that the three-dimensional crystallites are slightly strained until they coalesce.  相似文献   

11.
Ge:SiO(x)/SiO(2) multilayers are fabricated using a new reactive dc magnetron sputtering approach. The influence of the multilayer stoichiometry on the ternary Ge-Si-O phase separation and the subsequent size-controlled Ge nanocrystal formation is explored by means of x-ray absorption spectroscopy, x-ray diffraction, electron microscopy and Raman spectroscopy. The ternary system Ge-Si-O reveals complete Ge-O phase separation at 400?°C which does not differ significantly to the binary Ge-O system. Ge nanocrystals of < 5?nm size are generated after subsequent annealing below 700?°C. It is shown that Ge oxides contained in the as-deposited multilayers are reduced by a surrounding unsaturated silica matrix. A stoichiometric regime was found where almost no GeO(2) is present after annealing. Thus, the Ge nanocrystals become completely embedded in a stoichiometric silica matrix favouring the use for photovoltaic applications.  相似文献   

12.
Wawro A  Suto S  Czajka R  Kasuya A 《Nanotechnology》2008,19(20):205706
The solid state reaction of deposited Fe (four monolayers, ML) with vicinal Si(111) substrate induced by subsequent thermal treatment has been studied using scanning tunnelling microscopy. At the lower range of annealing temperatures up to 400?°C the bunched steps of bare substrate are reproduced by the surface of the covering iron silicide layer. At 400?°C the onset of three-dimensional growth of iron silicide islands is observed. In comparison to the samples covered with smaller amounts of Fe it appears at a lower annealing temperature. Above 500?°C the bunched steps split into lower ones but more densely distributed due to proceeding reactions between Fe-rich iron silicide and Si substrate. As a consequence, at 700?°C the well-developed three-dimensional nanocrystallites of iron silicide are randomly distributed on the Si surface. This observation is in contrast to the formation of a regular array of iron silicide crystallites upon deposition of 2?ML of Fe.  相似文献   

13.
Thin sputtered nickel films grown on SiC were annealed in an Ar/4 vol % H2 atmosphere at temperatures between 550 to 1450 °C for various times. The reactivity and the reaction-product morphology were characterized using optical microscopy, surface profilometry, X-ray diffraction, scanning electron microscopy and electron probe microanalysis. The reaction with the formation of silicides and carbon was observed to first occur above 650 °C. Above 750 °C, as the reaction proceeded, the initially formed Ni3Si2 layer was converted to Ni2Si and carbon precipitates were observed within this zone. The thin nickel film reacted completely with SiC after annealing at 950 °C for 2 h. The thermodynamically stable Ni2Si is the only observed silicide in the reaction zone up to 1050 °C. Above 1250 °C, carbon precipitated preferentially on the outer surface of the reaction zone and crystallized as graphite. The relative adhesive strength of the reaction layers was qualitatively compared using the scratch test method. At temperatures between 850 to 1050 °C the relatively higher critical load values of 20–33 N for SiC/Ni couples are formed. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Epitaxial transition metal films have recently been introduced as substrates for the scalable synthesis of transferable graphene. Here, real-time microscopy is used to study graphene growth on epitaxial Ru films on sapphire. At high temperatures, high-quality graphene grows in macroscopic (>100 μm) domains to full surface coverage. Graphene nucleation and growth characteristics on thin (100 nm) Ru films are consistent with a pure surface chemical vapor deposition process, without detectable contributions from C segregation. Experiments on thicker (1 μm) films show a systematic suppression of the C uptake into the metal to levels substantially below those expected from bulk C solubility data, consistent with a strain-induced reduction of the C solubility due to gas bubbles acting as stressors in the epitaxial Ru films. The results identify two powerful approaches--i) limiting the template thickness and ii) tuning the interstitial C solubility via strain--for controlling graphene growth on metals with high C solubility, such as Ru, Pt, Rh, Co, and Ni.  相似文献   

15.
Kahng YH  Lee S  Park W  Jo G  Choe M  Lee JH  Yu H  Lee T  Lee K 《Nanotechnology》2012,23(7):075702
Thermal stability is an important property of graphene that requires thorough investigation. This study reports the thermal stability of graphene films synthesized by chemical vapor deposition (CVD) on catalytic nickel substrates in a reducing atmosphere. Electron microscopies, atomic force microscopy, and Raman spectroscopy, as well as electronic measurements, were used to determine that CVD-grown graphene films are stable up to 700?°C. At 800?°C, however, graphene films were etched by catalytic metal nanoparticles, and at 1000?°C many tortuous tubular structures were formed in the film and carbon nanotubes were formed at the film edges and at catalytic metal-contaminated sites. Furthermore, we applied our pristine and thermally treated graphene films as active channels in field-effect transistors and characterized their electrical properties. Our research shows that remnant catalytic metal impurities play a critical role in damaging graphene films at high temperatures in a reducing atmosphere: this damage should be considered in the quality control of large-area graphene films for high temperature applications.  相似文献   

16.
Cheng Q  Xu S  Long J  Huang S  Guo J 《Nanotechnology》2007,18(46):465601
Silicon carbide films with different carbon concentrations x(C) have been synthesized by inductively coupled plasma chemical vapor deposition from a SiH(4)/CH(4)/H(2) gas mixture at a low substrate temperature of 500?°C. The characteristics of the films were studied by x-ray photoelectron spectroscopy, x-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, Fourier transform infrared absorption spectroscopy, and Raman spectroscopy. Our experimental results show that, at x(C) = 49?at.%, the film is made up of homogeneous nanocrystalline cubic silicon carbide without any phase of silicon, graphite, or diamond crystallites/clusters. The average size of SiC crystallites is approximately 6?nm. At a lower value of x(C), polycrystalline silicon and amorphous silicon carbide coexist in the films. At a higher value of x(C), amorphous carbon and silicon carbide coexist in the films.  相似文献   

17.
Si(111)衬底上多层石墨烯薄膜的外延生长   总被引:1,自引:0,他引:1  
利用固源分子束外延(SSMBE)技术, 在Si(111)衬底上沉积碳原子外延生长石墨烯薄膜, 通过反射式高能电子衍射(RHEED)、红外吸收谱(FTIR)、拉曼光谱(RAMAN)和X射线吸收精细结构谱(NEXAFS)等手段对不同衬底温度(400、600、700、800℃)生长的薄膜进行结构表征. RAMAN和NEXAFS结果表明: 在800℃下制备的薄膜具有石墨烯的特征, 而 400、600和700℃生长的样品为非晶或多晶碳薄膜. RHEED和FTIR结果表明, 沉积温度在600℃以下时C原子和衬底Si原子没有成键, 而衬底温度提升到700℃以上, 沉积的C原子会先和衬底Si原子反应形成SiC缓冲层, 且在800℃沉积时缓冲层质量较好. 因此在Si衬底上制备石墨烯薄膜需要较高的衬底温度和高质量的SiC缓冲层.  相似文献   

18.
Epitaxial graphene on ruthenium   总被引:18,自引:0,他引:18  
Graphene has been used to explore the fascinating electronic properties of ideal two-dimensional carbon, and shows great promise for quantum device architectures. The primary method for isolating graphene, micromechanical cleavage of graphite, is difficult to scale up for applications. Epitaxial growth is an attractive alternative, but achieving large graphene domains with uniform thickness remains a challenge, and substrate bonding may strongly affect the electronic properties of epitaxial graphene layers. Here, we show that epitaxy on Ru(0001) produces arrays of macroscopic single-crystalline graphene domains in a controlled, layer-by-layer fashion. Whereas the first graphene layer indeed interacts strongly with the metal substrate, the second layer is almost completely detached, shows weak electronic coupling to the metal, and hence retains the inherent electronic structure of graphene. Our findings demonstrate a route towards rational graphene synthesis on transition-metal templates for applications in electronics, sensing or catalysis.  相似文献   

19.
The selective formation of large‐scale graphene layers on a Rh‐YSZ‐Si(111) multilayer substrate by a surface‐induced chemical growth mechanism is investigated using low‐energy electron diffraction, X‐ray photoelectron spectroscopy, X‐ray photoelectron diffraction, and scanning tunneling microscopy. It is shown that well‐ordered graphene layers can be grown using simple and controllable procedures. In addition, temperature‐dependent experiments provide insight into the details of the growth mechanisms. A comparison of different precursors shows that a mobile dicarbon species (e.g., C2H2 or C2) acts as a common intermediate for graphene formation. These new approaches offer scalable methods for the large‐scale production of high‐quality graphene layers on silicon‐based multilayer substrates.  相似文献   

20.
Pure Fe with coverage of 0.5-2.0 nm was deposited on Si (111) 7×7 surfaces by reactive deposition epitaxy (RDE) in an integrated ultrahigh vacuum (UHV) system. Transmission electron microscopy (TEM) confirmed that the as-deposited epitaxial phase exhibits rod-like and equilateral triangular morphology. The as-deposited phase was identified as c-FeSi2 by electron diffraction and high-resolution transmission electron microscopy. It was found that there exists lattice distortion in epitaxial c-FeSi2 phase. Upon annealing at 1073 K, the metastable c-FeSi2 transforms into equilibrium β-FeSi2 phase, the latter inherits completely the morphology of c-FeSi2 phase. Based on RDE and subsequent annealing, a new fabrication technique to grow rod-like semiconducting β-FeSi2 on a Si substrate has been proposed in the present work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号