首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipid-free polyethylene membrane tubing (LFT) has been further developed in response to a growing need for an inexpensive and simple time-integrative sampling device for dissolved hydrophobic contaminants in water. The LFT sampler is based on the diffusion of dissolved hydrophobic target compounds through the aqueous boundary layer and into the polyethylene membrane, mimicking uptake by organisms. We demonstrate through laboratory and field validation studies that LFT provided the same benefits as many other passive sampling devices, withoutthe potential of analytical interference from lipid impurities. A total of 370 LFTs and semipermeable membrane devices were deployed for 21 days in paired studies at highly urbanized, undeveloped, and two Superfund sites, representing several river conditions. A simple internal surrogate spiking method served as an in situ calibration indicator of the effects of environmental conditions on the uptake rates. A modified extraction method for the LFT increased recoveries while decreasing solvent use and labor compared to other organic extraction procedures. LFT sampling rates were estimated using ratios, in situ calibration and modeling for over 45 target analytes, including PAHs, PCBs, and pesticides.  相似文献   

2.
A new method was developed to assess environmental tobacco smoke in air. The method is based on passive sampling and subsequent measurement of the concentration of 3-ethenylpyridine, a vapor-phase compound specific to tobacco smoke. Air samples were collected using a 3M organic vapor monitor. Tests were carried out in a dynamic chamber to determine the sampling rate (25.7 cm3/min). 3-Ethenylpyridine was desorbed from the sampler with 1 mL of pyridine/toluene mixture. 3-Ethenylpyridine was quantified by gas chromatography/mass spectrometry. The limit of detection was 0.01 microgram/sample, corresponding to a concentration of 0.27 microgram/m3 air calculated for a sampling period of 24 h. Field measurements were carried out to test the performance of the method. Mean concentrations ranging from 1.3 to 5.3 micrograms/m3 were measured for 3-ethenylpyridine in smoking environments, but no 3-ethenylpyridine was detected in nonsmoking environments. Active sampling using charcoal tubes was used as a reference method in the chamber tests and field measurements. Individual exposures can be easily and accurately measured by means of the passive sampler. Because of simple sample treatment, the method is also well-suited for large-scale monitoring of environmental tobacco smoke.  相似文献   

3.
The precision, accuracy, and sampling rates of Radiello and Ogawa passive samplers were evaluated in the laboratory using a flow-through chamber and under field conditions prior to their use in the 2007 Harbor Community Monitoring Study (HCMS), a saturation monitoring campaign in the communities adjacent to the Ports of Los Angeles and Long Beach. Passive methods included Radiello samplers for volatile organic compounds (benzene, toluene, ethylbenzene, xylenes, 1,3-butadiene), aldehydes (formaldehyde, acetaldehyde, acrolein) and hydrogen sulfide, and Ogawa samplers for nitrogen oxides and sulfur dioxide. Additional experiments were conducted to study the robustness of the passive sampling methods under variable ambient wind speed, sampling duration, and storage time before analysis. Our experimentally determined sampling rates were in agreement with the rates published by Radiello and Ogawa with the following exceptions: we observed a diffusion rate of 22.4 ± 0.1 mL/min for benzene and 37.4 ± 1.5 mL/min for ethylbenzene compared to the Radiello published values of 27.8 and 25.7 mL/min, respectively. With few exceptions, the passive monitoring methods measured one-week average ambient concentrations of selected pollutants with sensitivity and precision comparable to conventional monitoring methods averaged over the same period. Radiello Carbograph 4 VOC sampler is not suitable for the collection of 1,3-butadiene due to backdiffusion. Results for the Radiello aldehyde sampler were inconclusive due to lack of reliable reference methods for all carbonyl compounds of interest.  相似文献   

4.
A widely acknowledged limitation of current passive air sampling designs for semivolatile organic chemicals is their relatively low sampling rate, severely constraining the temporal resolution that can be achieved. Addressing the need for an improved sampling design which achieves significantly faster uptake while maintaining the capability of providing quantitative information, a new sampler has been developed that provides greatly increased sampling rates by forcing the wind to blow through the sampling medium. The sampler consists of a horizontally oriented, aerodynamically shaped, stainless steel flow tube mounted on a post with ball bearings, which turns into the wind with the help of vanes. A series of polyurethane foam (PUF) discs with relatively large porosity mounted inside the flow tube serve as the sampling medium. The sampled air volume is calculated from wind speed, which is measured outside the sampler and after passage through the sampling medium using precalibrated vortex rotor and turbine anemometers mounted on top of the sampler and at the exit of the flow tube, respectively. Small battery-operated data loggers are used for data storage. Under typical wind speed conditions, the sampler can collect 100 m(3)/ day, which is approaching the sampling rates of conventional high volume samplers. Controlled experiments in the laboratory and frontal chromatography theory yield the theoretical plate number and breakthrough volumes for polychlorinated biphenyls and polycyclic aromatic hydrocarbons in the PUF plugs and allow for the estimation of breakthrough levels for relatively volatile organic chemicals. After correction for breakthrough, the air concentration obtained with the new flow-through sampler are independent of sampling length and volume and compare favorably with those obtained from conventional pumped high volume samples.  相似文献   

5.
The importance of monitoring the transport of organic contaminants in soil and groundwater, and the pros and cons of existing sampling methods, are outlined. A new, alternative sampling method is proposed, using a passive sampler that functions as a water-permeable, semi-infinite sink for passing solutes of interest. Tracers integrated in the device store information on the volume of water passing through the sampler during the installation period. The conceptual basis of the sampling method is described. This device enables flux-proportional monitoring of the concentrations of mobile contaminants in the soil and groundwater. 14C-labeled phenanthrene (PHEN) and glyphosate (GLY) are used as case study compounds in laboratory experiments. The sorption capacities and uptake kinetics of 13 adsorbents are screened and compared, as well as the dissolution kinetics of three tracer salts: calcium citrate, calcium fluoride (CaF2), and calcium hydrogen phosphate (CaHPO4). The application of the passive sampler is then demonstrated in long-term laboratory experiments, using large soil columns under steady-state hydraulic conditions. The accumulated flux of PHEN was sampled with an accuracy of 3.6%-17.8%, using graphitized carbon, hexagonal mesoporous silica, and cross-linked polymers as adsorbents. The accumulated flux of GLY was sampled with an accuracy of 12.4%, using gamma-alumina as an adsorbent. The advantages and limitations of this new environmental monitoring method are discussed.  相似文献   

6.
Polyethylene passive sampling devices (PSDs) were deployed to investigate how passive samplers of multiple surface area-to-volume ratios could be used to characterize uptake kinetics for polyaromatic hydrocarbons (PAHs). Theoretically, uptake profiles for different thickness PSDs of the same surface area should show the following: where uptake is linear, the amount of compound accumulated in the different PSDs will be the same and where equilibrium is approached, the amount accumulated by the different PSDs will be proportional to sampler thickness. Polyethylene sheets of the same surface area and approximately 100 and 200 microm thickness were collected after 30, 60, and 90 days of exposure along with samples from a codeployed high volume sampler. Twelve priority pollutant PAHs could be routinely quantified in replicate PSDs. Overall, reproducibility between replicate PSDs was satisfactory, with normalized differences rarely exceeding 25%. The smallest analytes quantified, fluorene, phenanthrene, and anthracene, were shown to approach equilibrium during the deployment period, whereas uptake for fluoranthene and pyrene moved into the curvilinear stage. For most of the larger molecular weight PAHs such as indeno[1,2,3-cd]pyrene, uptake could be described using a linear uptake model. Preliminary sampling rates for the compounds which remained in the linear stage of uptake ranged between 0.5 and 1.5 m3 d(-1) dm(-2). Sampler to air partition coefficients were estimated for PAHs which approached equilibrium and predicted for some of the other compounds. Results suggest that a single deployment of PSDs with multiple surface area-to-volume ratios can be sufficient to determine whether uptake was linear or approaching equilibrium for a range of PAHs.  相似文献   

7.
枸杞色素的提取及纯化技术   总被引:1,自引:0,他引:1  
以制汁、制酒后的枸杞残渣为原料,通过有机溶剂进行提取,得到枸杞色素粗提品。试验结果表明,最佳提取溶剂乙酸乙酯,55℃下提取1h,提取3次可得最大提取率69%。用氧化镁柱层析对粗品进行纯化,用石油醚能有效洗脱粗品中的脂溶性杂质,再用石油醚丙酮(体积比10∶1)为洗脱液可有效洗脱得到类胡萝卜素,采用薄层色谱法(TLC法)、高效液相法(HPLC法)测定,β胡萝卜素、类胡萝卜素的纯度可达78%。  相似文献   

8.
Measurement of particle-bound organic carbon (OC) may be complicated by sampling artifacts such as adsorption of gas-phase species onto particles or filters or evaporation of semivolatile compounds off the particles. A denuder-based integrated organic gas and particle sampler (IOGAPS), specifically designed to minimize sampling artifacts, has been developed to sample atmospheric carbonaceous aerosols. IOGAPS is designed to first remove gas-phase chemicals via sorption to the XAD-coated denuder, and subsequently particles are trapped on a quartz filter. A backup sorbent system consisting of sorbent- (XAD-4 resin) impregnated filters (SIFs) was used to capture the semivolatile OC that evaporates from the particles accumulated on the upstream quartz filter. A traditional filter pack (FP) air sampler, which uses a single quartz filter to collect the particles, was employed for comparison in this study. Elemental and organic carbon were determined from filter punches by a thermal optical transmittance aerosol carbon analyzer. Field measurements show that there was no significant difference between the elemental carbon concentrations determined by the FP and IOGAPS, indicating that particle loss during the transit through the denuder tube was negligible. Compared with the OC determined by FP (3.9-12.6 microg of C/m3), the lower OC observed on the quartz filter in the IOGAPS (2.2-6.0 microg of C/m3) was expected because of the removal of gas-phase organics by the denuder. Higher semivolatile organic carbon (SVOC) on the backup SIFs during the night (1.24-8.43 microg of C/m3) suggests that more SVOC, emitted from primary sources or formed as secondary organic compounds, partitions onto the particles during the night because of the decreased ambient temperature. These data illustrate the utility of an IOGAPS system to more accurately determine the particle-bound OC in comparison to FP-based systems.  相似文献   

9.
A sensitive, simple, and cost-effective passive sampling methodology was developed to quantify personal exposure to gaseous polycyclic aromatic hydrocarbons (PAHs). A Fan-Lioy passive PAH sampler (FL-PPS) is constructed from 320 sections of 1-cm long SPB-5 GC columns (0.75-mm i.d. and 7-microm film thickness), similar to a mini-honeycomb denuder. Given the unique feature of the GC column stationary phase, gaseous PAHs are collected on the inner surfaces of the columns by molecular diffusion and thermally desorbed to GC/MS for analysis. The sampling rates of FL-PPS were determined in the laboratory using a controlled test atmosphere containing eight PAHs for a range of face velocity, temperature, relative humidity, PAH concentration, and sampling duration. The sampling rate (mean, %RSD, cm3/min) was 26.7 (21%) for acenaphthylene, 37.6 (25%) for acenaphthene, 56.2 (13%) for fluorene, 49.1 (25%) for phenanthrene, 62.7 (22%) for anthracene, 65.4 (24%) for fluoranthene, and 64.4 (18%) for pyrene over a sampling duration of 8-48 h. The sampling rate for naphthalene was approximately 14.1 (12%) cm3/min over a sampling period of 8 h but decreased along with an increase of sampling time. The effects of temperature, humidity, face velocity, and PAH concentration on the sampling rate were not significant for all the compounds tested. A reasonable agreement (<30%) was obtained for most compounds measured by FL-PPS and a conventional active PAH sampling method colocated side-by-side in the field, but a sampling time of 24 h or longer was required for detection of less abundant PAHs in community settings.  相似文献   

10.
Water-sampler equilibrium partitioning coefficients and aqueous boundary layer mass transfer coefficients for atrazine, diuron, hexazionone and fluometuron onto C18 and SDB-RPS Empore disk-based aquatic passive samplers have been determined experimentally under a laminar flow regime (Re = 5400). The method involved accelerating the time to equilibrium of the samplers by exposing them to three water concentrations, decreasing stepwise to 50% and then 25% of the original concentration. Assuming first-order Fickian kinetics across a rate-limiting aqueous boundary layer, both parameters are determined computationally by unconstrained nonlinear optimization. In addition, a method of estimation of mass transfer coefficients--therefore sampling rates--using the dimension-less Sherwood correlation developed for laminar flow over a flat plate is applied. For each of the herbicides, this correlation is validated to within 40% of the experimental data.The study demonstrates that for trace concentrations (sub 0.1 microg/L) and these flow conditions, a naked Empore disk performs well as an integrative sampler over short deployments (up to 7 days) for the range of polar herbicides investigated. The SDB-RPS disk allows a longer integrative period than the C18 disk due to its higher sorbent mass and/or its more polar sorbent chemistry. This work also suggests that for certain passive sampler designs, empirical estimation of sampling rates may be possible using correlations that have been available in the chemical engineering literature for some time.  相似文献   

11.
Over the past couple of years, several analytical methods have been developed for assessing the bioavailability of environmental contaminants in sediments and soils. Comparison studies suggest that equilibrium passive sampling methods generally provide the better estimates of internal concentrations in organisms and thus of subsequent risks. However, field studies to validate the potential of passive sampling to predict actual in situ bioaccumulation are scarce and limited information only exists on selected, individual compounds. The present study investigated whether bioaccumulation of PAH and complex petroleum hydrocarbon mixtures in field-exposed aquatic worms could be predicted properly with passive samplers. To this end, in situ bioaccumulation in aquatic worms at 6 PAH-contaminated locations and 8 petroleum hydrocarbon (oil)-contaminated locations was compared with the results of in situ solid phase micro extraction (SPME) applications. For the oil-contaminated sediments, bioaccumulation was also assessed in the lab with polyoxymethylene solid phase extraction (POM-SPE). Actual PAH bioaccumulation was generally predicted within a factor of 4 with in situ SPME, using temperature-adjusted SPME fiber-water partition coefficients and lab-derived bioaccumulation factors (BAFs) for the worm species used, demonstrating the method's potential under field conditions. In situ SPME appeared to be less suitable for predicting bioaccumulation of oil however, in contrast to POM-SPE in the lab, which assessed in situ oil bioaccumulation within a factor of 3, while also closely reflecting the actual distribution of oil boiling point fractions (the hydrocarbon block profile) as accumulated by the worms. All in all, the results indicated that (specific) equilibrium passive samplers, either applied in the field or the lab, have great potential for assessing bioaccumulation of environmental contaminant mixtures from field-contaminated sediments.  相似文献   

12.
A method for the extraction and purification of saffron secondary metabolites was developed. Among the solvents checked water was the most convenient for picrocrocin, 2,6,6-trimethyl-4-hydroxy-1-car-boxaldehyde-1-cyclohexene (HTCC) and crocin extraction from saffron stigmas. The compounds were separated by analytical and preparative thin layer chromatography on aluminum oxide, and identified by spectroscopic techniques. Quantitative determination was performed by high performance liquid chromatography methods with reverse phase C-18. Picrocrocin, HTCC and crocin isolated by preparative TLC showed a chromatographic purity of 98%, 96% and.70%, isolation yields being 88, 98 and 70%, respectively. The isolated compounds may be useful as food colorants.  相似文献   

13.
A flow-through sampler (FTS) was codeployed with a super high volume active sampler (SHV) between October 2007 and November 2008 to evaluate its ability to determine the ambient concentrations of pesticides and brominated flame retardants in the Canadian High Arctic atmosphere. Nine pesticides and eight flame retardants, including three polybrominated diphenyl ether (PBDE) replacement chemicals, were frequently detected. Atmospheric concentrations determined by the two systems showed good agreement when compared on monthly and annually integrated time scales. Pesticide concentrations were normally within a factor of 3 of each other. The FTS tended to generate higher PBDE concentrations than the SHV presumably because of the entrainment of blowing snow/ice crystals or large particles. Taking into account uncertainties in analytical bias, sample volume, and breakthrough estimations, the FTS is shown to be a reliable and cost-effective method, which derives seasonally variable concentrations of semivolatile organic trace compounds at extremely remote locations that are comparable to those obtained by conventional high volume air sampling. Moreover, the large sampling volumes captured by the FTS make it suitable for the screening of new and emerging chemicals in the remote atmosphere where concentrations are usually low.  相似文献   

14.
Modified polymer-coated glass samplers (POGs), termed EVA samplers, consist of micrometer-thin layers of ethylene vinyl acetate (EVA) coated onto a glass fiber filter or aluminum foil substrate. These samplers were designed to equilibrate rapidly with priority pollutants in air, making them ideal for short-term spatial studies in ambient or indoor air. The EVA sampler was calibrated by measuring the uptake of polychlorinated biphenyls (PCBs) over 8 weeks in an indoor environment, and four different film thicknesses were monitored that ranged from 0.1 to 30 μm. The results were used to calculate the average mass transfer coefficient (50.5 m/day) and generate contour maps that provide guidance in choosing an appropriate EVA sampler for a particular study based on film thickness, deployment time, and the log K(OA) of the anlayte. A range of air pollutant classes was also added to the EVA sampler prior to deployment to assess depuration rates. These included polychlorinated biphenyls (PCBs), current-use pesticides (CUPs), perfluorinated compounds (PFCs), and polybrominated diphenyl ethers (PBDEs). On the basis of the depuration profiles, the EVA sampler was a suitable equilibrium sampler for several CUPs and PCBs; however, for the high molecular weight PCBs and PBDEs, the EVA sampler operates as a linear uptake sampler. Samplers were also evaluated for their use as a rapid screening tool for assessing concentrations of siloxanes in indoor air. The EVA sampler was used to estimate air concentrations for D4 and D5 in laboratory air to be 118 and 89 ng/m(3), respectively. Analyses were performed directly using thermal desorption gas chromatography/mass spectrometry (TDS-GC-MS). EVA samplers show promise due to their relatively low cost and ease of deployment and applicability to a wide range of priority chemicals. The ability to alter the film thickness, and hence the sorption capacity and performance of the EVA sampler, allows for a versatile sampler that can be used under varying sampling conditions and deployment times.  相似文献   

15.
Passive samplers for polar organic compounds often use a polyethersulfone (PES) membrane to retain the particulate sorbent material (e.g., in a POCIS; polar organic chemical integrative sampler) or to reduce the sampling rate and thus extend the kinetic regime (e.g., in a Chemcatcher). The transport kinetics over the PES membrane are evaluated here in a short-term (6 days) and a long-term (32 days) experiment with POCIS and Chemcatchers. Passive samplers were placed in a channel with flowing river water that was spiked with 22 organic chemicals including pharmaceuticals, pesticides and biocides; with logK(ow) (logarithmic octanol-water partitioning coefficient) values between -2.6 and 3.8. Samplers were removed at intervals and membranes and sorbent material were extracted and analyzed with LC-MS/MS. Uptake kinetics of the compounds fell between two extremes: (1) charged chemicals and chemicals of low hydrophobicity did not accumulate in PES and rapidly transferred to the sorbent (e.g., diclofenac) and (2) more hydrophobic chemicals accumulated strongly in the PES and appeared in the sorbent after a lag-phase (e.g., diazinon and diuron). Sorption kinetics were modeled with a three-compartment first-order kinetic model to determine uptake and elimination rate constants and partitioning coefficients. Water PES partitioning coefficients fitted with the model correlated well with experimentally determined values and logK(ow). Sampling rates of Chemcatcher (0.02-0.10 L/d) and POCIS (0.02-0.30 L/d) showed similar patterns and correlated well. Thus the samplers are interchangeable in practical applications. Longer lag-phases may pose problems when calculating time-weighted average aqueous concentrations for short passive sampling windows and for a correct integrative sampling of fluctuating concentrations.  相似文献   

16.
Air was sampled for one year in the central valley of Costa Rica using an active high-volume sampler as well as passive samplers (PAS) based on polyurethane foam (PUF) disks and XAD-resin filled mesh cylinders. Extracts were analyzed for pesticides that are either banned or currently used in Costa Rican agriculture. Sampling rates for PUF-based passive air samplers, determined from the loss of depuration compounds spiked on the disks prior to deployment averaged 5.9 +/- 0.9 m3 x d(-1) and were higher during the windier dry season than during the rainy season. Sampling rates for the XAD-based passive sampler were determined from the slopes of linear relationships that were observed between the amount of pesticide sequestered in the resin and the length of deployment, which varied from 4 months to 1 year. Those sampling rates increased with decreasing molecular size of a pesticide, and their average of 2.1 +/- 1.5 m3 x d(-1) is higher than rates previously reported for temperate and polar sampling sites. Even though the trends of the sampling rate with molecular size and temperature are consistent with the hypothesis that molecular diffusion controls uptake in passive samplers, the trends are much more pronounced than a direct proportionality between sampling rate and molecular diffusivity would suggest. Air concentrations derived by the three sampling methods are within a factor of 2 of each other, suggesting that properly calibrated PAS can be effective tools for monitoring levels of pesticides in the tropical atmosphere. In particular, HiVol samplers, PUF-disk samplers, and XAD-based passive samplers are suitable for obtaining information on air concentration variability on the time scale of days, seasons and years, respectively. This study represents the first calibration study for the uptake of current use pesticides by passive air samplers.  相似文献   

17.
In this study, three types of solid-phase microextraction (SPME) passive samplers, including a fiber-retracted device, a polydimethylsiloxane (PDMS)-rod and a PDMS-membrane, were evaluated to determine the time weighted average (TWA) concentrations of polycyclic aromatic hydrocarbons (PAHs) in Hamilton Harbor (the western tip of Lake Ontario, ON, Canada). Field trials demonstrated that these types of SPME samplers are suitable for the long-term monitoring of organic pollutants in water. These samplers possess all of the advantages of SPME: they are solvent-free, sampling, extraction and concentration are combined into one step, and they can be directly injected into a gas chromatograph (GC) for analysis without further treatment. These samplers also address the additional needs of a passive sampling technique: they are economical, easy to deploy, and the TWA concentrations of target analytes can be obtained with one sampler. Moreover, the mass uptake of these samplers is independent of the face velocity, or the effect can be calibrated, which is desirable for long-term field sampling, especially when the convection conditions of the sampling environment are difficult to measure and calibrate. Among the three types of SPME samplers that were tested, the PDMS-membrane possesses the highest surface-to-volume ratio, which results in the highest sensitivity and mass uptake and the lowest detection level.  相似文献   

18.
Polyurethane foam (PUF) disk passive air samplers were evaluated under field conditionsto assessthe effect of temperature and wind speed on the sampling rate for polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs). Passive samples integrated over 28-day periods were compared to high-volume air samples collected for 24 h, every 7 days. This provided a large data set of 42 passive sampling events and 168 high-volume samples over a 3-year period, starting in October 2003. Average PUF disk sampling rates for gas-phase chemicals was approximately 7 m3 d(-1) and comparable to previous reports. The high molecular weight PAHs, which are mainly particle-bound, experienced much lower sampling rates of approximately 0.7 m3 d(-1). This small rate was attributed to the ability of the sampling chamber to filter out coarse particles with only the fine/ultrafine fraction capable of penetration and collection on the PUF disk. Passive sampler-derived data were converted to equivalent air volumes (V(EQ), m3) using the high-volume air measurement results. Correlations of V(EQ) against meteorological data collected on-site yielded different behavior for gas- and particle-associated compounds. For gas-phase chemicals, sampling rates varied by about a factor of 2 with temperature and wind speed. The higher sampling rates at colder temperatures were explained bythe wind effecton sampling rates. Temperature and wind were strongly correlated with the greatest winds at coldertemperatures. Mainly particle-phase compounds (namely, the high molecular weight PAHs) had more variable sampling rates. Sampling rates increased greatly atwarmertemperatures as the high molecular weight PAH burden was shifted toward the gas phase and subject to higher gas-phase sampling rates. At colder temperatures, sampling rates were reduced as the partitioning of the high molecular weight PAHs was shifted toward the particle phase. The observed wind effect on sampling for the particle-phase compounds is believed to be tied to this strong temperature dependence on phase partitioning and hence sampling rate. For purposes of comparing passive sampler derived data for persistent organic pollutants, the factor of 2 variability observed for mainly gas-phase compounds is deemed to be acceptable in many instances for semiquantitative analysis. Depuration compounds may be used to improve accuracy and provide site-specific sampling rates, although this adds a level of complexity to the analysis. More research is needed to develop and test passive air samplers for particle-associated chemicals.  相似文献   

19.
Estrogenicity of river water is highly variable and it is difficult to obtain an average measure of the estrogenicity. Consequently it is difficult to tie the estrogenic effects observed in fish to their level of exposure to estrogens. To get a better handle on average estrogenic exposure we tested a recently developed passive sampling system (polar organic chemical integrative sampler, POCIS). In addition, we investigated the bioaccumulation of estrogens in caged brown trout and measured plasma vitellogenin in males as a bioindicator of estrogenic effects. We developed a mini-caging method to suit the hydrological conditions in small rivers and to improve upon the often poor survival of salmonids in caging trials. POCISs were positioned upstream and downstream of 5 sewage treatment works' discharges and left on site for 3 weeks (as were the caged fish), during which period 3 water grab samples were taken at each site. Concentrations of estrogens were determined using a yeast-based reporter gene assay and chemical analysis. Results from grab sampling, passive sampling, and bioaccumulation were correlated; however, plasma vitellogenin concentrations were elevated at only 1 of 5 sites. POCISs provide an integrated and biologically meaningful measure of estrogenicity in thatthey accumulate estrogens in a pattern similar to that of brown trout. Mini-caging appears a significant methodological advance; no fish were lost, moreover, all fish survived in excellent health.  相似文献   

20.
The purpose of this study was to test in the laboratory the performance of a passive multilayer sampler (MLS) for obtaining detailed profiles of gas-phase volatile organic compounds (VOCs) in unsaturated sediments. The MLS is essentially a chain of isolated, cylindrical stainless steel dialysis cells filled with distilled water and closed with membranes at both ends. The sampling principle is based on passive equilibration of the unsaturated zone gas phase with water in the cells. Using trichloroethene (TCE) as a model VOC, and after testing the required equilibration time in the laboratory (about 50 h), results of a large container (210 L) experiment show that TCE concentrations obtained by the MLS deployed inside a well screen corresponded very well to the profile obtained by dialysis cells buried in the sediment. A field profile taken at the saturated-unsaturated interface region of a VOC-contaminated area using the MLS shows steep TCE concentration gradients (1119 microg TCE/L-air/cm) in the gas phase of the unsaturated zone just above the water table.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号