首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fulvic acid (FA) from a tropical Australian billabong (lagoon) was isolated with XAD-8 resin and characterized using size exclusion chromatography, solid state cross-polarization magic angle spinning, 13C nuclear magnetic resonance spectroscopy, elemental analysis, and potentiometric acid-base titration. Physicochemical characteristics of the billabong FA were comparable with those of the Suwannee River Fulvic Acid (SRFA) standard. The greater negative charge density of the billabong FA suggested it contained protons that were more weakly bound than those of SRFA, with the potential for billabong water to complex less metal contaminants, such as uranium (U). This may subsequently influence the toxicity of metal contaminants to resident freshwater organisms. The complexation of U with dissolved organic carbon (DOC) (10 mg L(-1)) in billabong water was calculated using the HARPHRQ geochemical speciation model and also measured using flow field-flow fractionation combined with inductively coupled plasma mass-spectroscopy. Agreement between both methods was very good (within 4% as U-DOC). The results suggest that in billabong water at pH 6.0, containing an average DOC of 10 mg L(-1) and a U concentration of 90 μg L(-1), around 10% of U is complexed with DOC.  相似文献   

2.
Anthropogenic activities have increased the amount of mercury (Hg) transported atmospherically to the Arctic. At the same time, recent climate warming is altering the limnology of arctic lakes and ponds, including increases in aquatic primary production. It has been hypothesized that climate-driven increases in aquatic production have enhanced Hg scavenging from the water column, and that this mechanism may account for much of the recent rise in lake sediment Hg. Here, we test the relationship between climate, algal production, and sediment Hg using a well-dated and multiproxy lake sediment record spanning the Holocene from Lake CF3 (Baffin Island, Nunavut, Canada). During the early Holocene, peak (summer) insolation drove July air temperatures higher than present, and resulted in increased autochthonous primary production as recorded by total organic matter, spectrally inferred Chl-a, diatom abundance, and carbon stable isotopic signatures. However, there are no relationships between any of these proxies and sediment Hg concentrations during this interval. Given that the behavior of preindustrial Hg was relatively stable during past intervals of naturally mediated high production, we surmise that postindustrial increases in Hg accumulation within CF3 reflect a multiplicative effect of atmospheric deposition of anthropogenic Hg and increased sedimentation rates.  相似文献   

3.
The influence of dissolved organic carbon (DOC) on the toxicity of uranium (U) to three Australian tropical freshwater species, the Northern Trout Gudgeon (Mogurnda mogurnda), green hydra (Hydra viridissima) and unicellular green alga (Chlorella sp.) was assessed. Exposures were conducted in synthetic soft water without DOC and with DOC added in the form of standard Suwannee River Fulvic Acid (SRFA). Organisms were exposed to a range of U concentrations at a range of DOC concentrations (0-20 mg L(-1)). U toxicity was up to 20 times less in water containing 20 mg L(-1) DOC, relative to DOC-free test waters. U toxicity was also assessed using natural water from a tropical Australian billabong containing 10 mg L(-1) DOC. U toxicity was up to ten times less in the billabong water, relative to DOC--free test waters. SRFA was twice as effective at reducing U toxicity as the billabong water at equivalent DOC concentrations. Geochemical speciation modeling confirmed the decreased U toxicity that resulted from both DOC sources was primarily due to a decrease in the free uranyl ion (UO2(2+)) through complexation with DOC. A predictive model is presented for each of the organisms that can be used to predict U toxicity at a given U and DOC concentration.  相似文献   

4.
In vitro fermentations of pure cellulose by mixed ruminal microorganisms were conducted under conditions in which pH declined within ranges similar to those observed in the rumen. At low cellulose concentrations (12.5 g/L), the first-order rate constants (k) of cellulose disappearance were successively lower at initial pH values of 6.86, 6.56, and 6.02, but in each case the value of k was maintained over a pH range of 0.3 to 1.2 units, as the fermentation progressed. Plots of k versus initial pH were linear, and k displayed a relative decrease of approximately 7% per 0.1 unit decrease in pH. At high cellulose concentration (50 g/L) and an initial pH of 6.8, cellulose digestion was initially zero order, the absolute rate of digestion declined with pH and digestion essentially ceased at pH 5.3 after only 30% of the added cellulose was digested. Further incubation resulted in a loss of bound N and P, suggesting that at low pH cells lysed or detached from the undigested fibers. Pure cultures of ruminal cellulolytic bacteria also were able to ferment cellulose to a minimum pH of 5.1 to 5.3, but the extent of fermentation was increased by coculture with noncellulolytic bacteria. A model is proposed in which the first-order rate constant of cellulose digestion is determined by the pH at which the fermentation is initiated, and end product ratios reflect greater activity of the noncellulolytic population as pH declines.  相似文献   

5.
《Journal of dairy science》2022,105(1):424-440
In Federal Milk Marketing Orders (FMMO), which use multiple component pricing schemas, farmers are paid for delivered quantity of butterfat, protein, and other solids, plus a producer price differential (PPD). The PPD captures the difference between the total handler obligations to the pool and the total component value of milk. In 2020, record negative PPD caused widespread frustration among dairy farmers. The primary objective of this research was to provide a comprehensive analysis of factors that affect PPD and to quantify their relative importance. We examined FMMO data from the past 10 yr including prices, utilizations, and tests. By decomposing the PPD, we were able to isolate the drivers of negative values. We found that long-term trends in usage, most importantly declining beverage milk and rising component tests, including both butterfat and protein, have substantially reduced PPD over the past decade. Class I milk pricing reform of 2018 exacerbated negative PPD in 2020, but we found that the PPD would have been negative even without that reform. The greatest contributor to recent negative PPD was the spread between cheese and milk powder prices, caused by shifts in demand due to the COVID-19 pandemic and USDA intervention cheese purchases. A range of policy modifications proposed to address negative PPD was evaluated.  相似文献   

6.
This paper outlines a procedure that quantifies the impact of different sources of spatial variability and uncertainty on ecological risk estimates. The procedure is illustrated in a case study that estimates the risks of cadmium for a little owl (Athene noctua vidalli) living in a Dutch river flood plain along the river Rhine. A geographical information system (GIS) was used to quantify spatial variability in contaminant concentrations and habitats. It was combined with an exposure and effect model that uses Monte Carlo simulation to quantify parameter uncertainty. Spatial model uncertainty was assessed by the application of two different spatial interpolation methods (classification and kriging) and foraging ranges. The results of the case study show that parameter uncertainty is the main type of uncertainty influencing the risk estimate, and to a lesser extent spatial variability, while spatial model uncertainty was of minor importance. Compared to the deterministically calculated hazard index for the little owl (0.9), inclusion of spatial variability resulted in a median hazard index that can vary between 0.8 and 1.4. It is concluded that a single estimator for a whole flood plain may over- or underestimate risks for specific parts within the flood plain. Further research that expands the procedure presented in this paper is necessary to improve the incorporation of spatial factors in ecological risk assessment.  相似文献   

7.
In view of poor constraints on historical combustion emissions, past environmental loadings of black carbon (BC) and polycyclic aromatic hydrocarbon (PAH) were reconstructed from dated lake sediment cores collected 70 km south of Stockholm, Sweden. Compared to several dramatic variations over the recent 150 years, the preindustrial loading were steady within +/-50% through the entire medieval with BC fluxes of 0.071 g m(-2) yr(-1) and PAH fluxes of 6 microg m(-2) yr(-1). In the wood-burning dominated century leading up to the industrial revolution around 1850, increasing BC fluxes were leading PAH fluxes. BC fluxes reached their millennial-scale maximum around 1920, whereas PAH fluxes increased exponentially to its record maximum around 1960, 50-fold above preindustrial values. For 1920-1950, BC fluxes consistently decreased as PAH fluxes kept increasing. Coal and coke represented >50% of the Swedish energy market in the 1930s. Combined with sharply decreasing (1,7-)/(1,7-+2,6-dimethylphenanthrene), indicative of diminishing wood combustion, and decreasing methylphenanthrenes/phenanthrene, indicative of higher-temperature combustion (coal instead of wood), the sediment archive suggests that the relative BC/PAH emission factors thus are lower for coal than for wood combustion. For the first time, both BC and PAH fluxes decreased after 1960. This trend break is a testament to the positive effects of decreasing reliance on petroleum fuels and a number of legislative actions aimed at curbing emissions and by 1990, the loading of BC was back at preindustrial levels, whereas that of PAH were the lowest since the 1910s. However, for the most recent period (1990-2004) the BC and PAH fluxes are no longer decreasing, putatively reflecting a slight increase in diesel consumption and a doubling of softwood-pellet burners for home heating.  相似文献   

8.
《Journal of dairy science》2023,106(8):5485-5500
Heat stress (HS) in dairy cows affects dry matter intake, milk yield, reproduction, and culling rate. Cooling systems (CS) may partially revert these effects, but their profitability depends on the price of milk and effectiveness and cost of the CS. Because these effects may interact over time, stochastic dynamic models are useful tools to evaluate the effects of HS and the profitability of CS. Several HS intensity scenarios, from 1,000 to 31,000 temperature and humidity index load (THILoad, units/yr), were simulated in a stochastic dynamic dairy herd simulator, with 3 milk prices (€0.28, €0.32, and €0.36/L) and 2 initial investment costs in fans and sprinklers (€100 and €200/cow). The HS and CS scenarios simulated were modeled as a function of the THILoad to predict the technical and economic performance in 21 selected locations of the Mediterranean. The THILoad mean of the 21 selected locations was 12,530 (ranging from 6,908 to 31,424). Heat stress reduced milk yield in a range of 346 to 1,696 L/cow per year, feeding costs in a range of €63 to €266/cow per year, and pregnancy rate in a range of 1.0 to 3.0%/yr and increased culling rates in a range of 5.7 to 16.4%/yr compared with the control scenario. The implementation of CS increased milk yield in a range from 173 to 859 L/cow per year, feeding cost in a range from €26 to €139/cow per year, and pregnancy rate in a range from 0.1 to 1.0%/yr and reduced culling rate in a range from 1.0 to 3.9%/yr compared with HS scenarios. When the THILoad was ≤6,300, the implementation of CS was never profitable, from 6,300 to 11,000 was dependent on milk price and CS cost, and over 11,000 was consistently profitable. The Δnet margin (€/cow per year) for CS at an initial investment cost of €100/cow ranged from −9 to 239 and at an initial investment cost of €200/cow ranged from −24 to 225. The profitability of CS depends on the THILoad, milk price, and CS cost.  相似文献   

9.
This paper mainly focuses on the uniaxial bias extension behaviors of quartz plain weave fabrics. A series of bias extension tests are carried out on quartz plain weave fabrics with different widths to evaluate the strength behaviors. A portable microscope is adopted to capture and record informative resources on the sample surface. The tensile tenacity, load–displacement curves, width change history as well as Poisson’s ratio history of different sample widths are compared and analyzed. Also, a theoretical model is proposed to predict the critical width which is the maximum width without yarn failure in bias extension test. Theoretical prediction shows reasonable agreement with experiments. Tensile tests operated on three directions (warp, weft, and bias) reveal the significant mechanical difference is primarily caused by different failure mechanisms.  相似文献   

10.
The aim of this study is to predict the solid-solution partitioning of heavy metals in river flood plain soils. We compared mechanistic geochemical modeling with a statistical approach. To characterize the heavy metal contamination of embanked river flood plain soils in The Netherlands, we collected 194 soil samples at 133 sites distributed in the Dutch part of the Rhine and Meuse river systems. We measured the total amounts of As, Cd, Cr, Cu, Ni, Pb, and Zn in the soil samples and the metal fraction extractable by 2.5 mM CaCl2. We found a strong correlation between heavy metal contamination and organic matter content, which was almost identical for both river systems. Speciation calculations by a fully parametrized model showed the strengths and weaknesses of the mechanistic approach. Cu and Cd concentrations were predicted within one log scale, whereas modeling of Zn and Pb needs adjustment of some model parameters. The statistical fitting approach produced better results but is limited with regard to the understanding it provides. The log RMSE for this approach varied between 0.2 and 0.32 for the different metals. The careful modeling of speciation and adsorption processes is a useful tool for the investigation and understanding of metal availability in river flood plain soils.  相似文献   

11.
Modeling the past atmospheric deposition of mercury using natural archives   总被引:3,自引:0,他引:3  
Historical records of mercury (Hg) accumulation in lake sediments and peat bogs are often used to estimate human impacts on the biogeochemical cycling of mercury. On the basis of studies of lake sediments, modern atmospheric mercury deposition rates are estimated to have increased by a factor of 3-5 compared to background values: i.e., from about 3-3.5 microg Hg m(-2) yr(-1) to 10-20 microg Hg m(-2) yr(-1). However, recent studies of the historical mercury record in peat bogs suggest significantly higher increases (9-400 fold, median 40x), i.e., from about 0.6-1.7 microg Hg m(-2) yr(-1) to 8-184 microg Hg m(-2) yr(-1). We compared published data of background and modern mercury accumulation rates derived from globally distributed lake sediments and peat bogs and discuss reasons for the differences observed in absolute values and in the relative increase in the industrial age. Direct measurements of modern wet mercury deposition rates in remote areas are presently about 1-4 microg m(-2) yr(-1), but were possibly as high as 20 microg Hg m(-2) yr(-1) during the 1980s. These values are closer to the estimates of past deposition determined from lake sediments, which suggests that modern mercury accumulation rates derived from peat bogs tend to overestimate deposition. We suggest that smearing of 210Pb in the uppermost peat sections contributes to an underestimation of peat ages, which is the most important reason for the overestimation of mercury accumulation rates in many bogs. The lower background mercury accumulation rates in peat as compared to lake sediments we believe is the result of nonquantitative retention and loss of mercury during peat diagenesis. As many processes controlling time-resolved mercury accumulation in mires are still poorly understood, lake sediments appear to be the more reliable archive for estimating historical mercury accumulation rates.  相似文献   

12.
A time-varying, multispecies, modular, three-dimensional transport model (MT3DMS) was developed to simulate groundwater transport of nitrogen from increasing sources on land to the shore of Nauset Marsh, a coastal embayment of the Cape Cod National Seashore. Simulated time-dependent nitrogen loads at the coast can be used to correlate with current observed coastal eutrophic effects, to predict current and ultimate effects of development, and to predict loads resulting from source remediation. A time-varying nitrogen load, corrected for subsurface loss, was applied to the land subsurface in the transport model based on five land-use coverages documenting increasing development from 1951 to 1999. Simulated nitrogen loads to Nauset Marsh increased from 230 kg/yr before 1930 to 4390 kg/yr in 2001 to 7130 kg/yr in 2100, assuming future nitrogen sources constant at the 1999 land-use rate. The simulated nitrogen load per area of embayment was 5 times greater for Salt Pond, a eutrophic landward extension of Nauset Marsh, than for other Nauset Marsh areas. Sensitivity analysis indicated that load results were little affected by changes in vertical discretization and annual recharge but much affected by the nitrogen loss rate assumed for a kettle lake downgradient from a landfill.  相似文献   

13.
Bruce HL 《Meat science》2004,66(2):507-512
Identifying rates of pH and temperature decline associated with bovine M. longissimus thoracis et lumborum (LTL) tenderness would assist beef carcass processors to produce a high quality product. An exponential decay equation was used to describe the early post mortem declines of pH values adjusted to 20?°C and their concomitant temperature data from 371 bovine LTL muscles. Approximately 10% of the muscles in the database exhibited non-exponential pH decline post mortem and the model did not converge for these muscles. For convergent muscles, the model predicted pH values homoscedastically with no significant bias. Limits of agreement analysis showed that the model predicted the adjusted pH value within 0.14 pH units. Prediction error was evenly distributed and the intra-class correlation coefficent was high (r(I)=0.98). When applied to the muscle temperature data, the exponential equation predicted temperature values heteroscedastically. These results indicated that this exponential equation characterised the post mortem pH decline in LTL muscle sufficiently well for researchers to use the exponential constant (k) of decay to describe this decline with time or muscle temperature. The equation was not appropriate for describing the decline of muscle temperature with time post mortem in this data set.  相似文献   

14.
The focus of coagulation as a water treatment process is shifting to accommodate recent regulatory additions that strive to balance the risks between microbial and chemical contamination of drinking water. In this work, enhanced coagulation using increased ferric chloride dose and/or pH adjustment was evaluated for removal efficacy of viruses on the United States Environmental Protection Agency (USEPA) Contaminant Candidate List (CCL), their surrogates, and dissolved organic carbon (DOC). Jar tests demonstrated that optimal DOC removal was achieved using 40 mg/L FeCl3 at a pH between 5 and 6. Under these conditions, bench-scale testing resulted in a maximum removal of 2.58 log units of adenovirus type 4, 2.50 log units of feline calicivirus, 2.32 log units of MS2, 1.75 log units of PRD1, 1.52 log units of phi-X174, 2.49 log units of fr, and 56% of DOC. The trend in virus removals (MS2 and fr > PRD1 and phi-X174) was consistent between bench- and pilot-scale testing; however, pilot-plant removals exceeded bench-scale removals. Feline calicivirus was more efficiently removed than the bacteriophages, thereby suggesting potential for the bacteriophages as suitable surrogates, with MS2 and fr being more representative and PRD1 and phi-X174 (which were removed to a lesser extent) more conservative. The bacteriophages do not appear to be appropriate surrogates for adenovirus.  相似文献   

15.
焦糖色在食用色素领域占有重要地位,因为普通法焦糖色具有高安全性,正日渐成为当下研究的热点。本文以普通法焦糖色为对象,探究了保温时间、样品浓度、热处理等因素对其理化性质的影响,试验结果显示:保温时间越长,p H越低且下降幅度越小,并最终趋于平衡;色率随保温时间的延长呈先增后减的趋势,120 min后基本稳定;红色指数、黄色指数随保温时间的延长呈先减后增的趋势,120 min后保持稳定;色率、红色指数、黄色指数的热处理前后变化基本遵循随保温时间延长变化值增加的趋势,保温超过90 min,变化值接近;样品制备终止后,保温促进物质的后续反应,促使物质稳定,利于各指标的稳定;样品浓度影响焦糖色的稳定性,高浓度焦糖色抑制物质的传递,因此稳定性更高。  相似文献   

16.
A high-resolution record of polycyclic aromatic hydrocarbon (PAH) deposition in Rhode Island over the past approximately 180 years was constructed using a sediment core from the anoxic Pettaquamscutt River basin. The record showed significantly more structure than has hitherto been reported and revealed four distinct maxima in PAH flux. The characteristic increase in PAH flux at the turn of the 20th century was captured in detail, leading to an initial maximum prior to the Great Depression. The overall peak in PAH flux in the 1950s was followed by a maximum that immediately preceded the 1973 Organization of Petroleum Exporting Countries (OPEC) oil embargo. During the most recent portion of the record, an abrupt increase in PAH flux between 1996 and 1999 has been found to follow a period of near constant fluxes. Because source-diagnostic ratios indicate that petrogenic inputs are minor throughout the record, these trends are interpreted in terms of past variations in the magnitude and type of combustion processes. For the most recent PAH maximum, energy consumption data suggest that diesel fuel combustion, and hence traffic of heavier vehicles, is the most probable cause for the increase in PAH flux. Systematic variations in the relative abundance of individual PAHs in conjunction with the above changes in flux are interpreted in relation to the evolution of combustion processes. Coronene, retene, and perylene are notable exceptions, exhibiting unique down-core profiles.  相似文献   

17.
Participation in milk-recording programs that provide data for national genetic evaluations of dairy cattle in the United States is voluntary, but the effectiveness of the evaluation system increases with the number of herds that contribute data. To investigate patterns of herd participation in Dairy Herd Improvement (DHI) testing, periods of continuous testing were computed based on the year that a herd initiated or terminated testing and by geographical region. Continuous testing was defined as at least one test per 6-mo period. Some herds discontinued testing and then re-enrolled. Across all years (1960 through 2002), 65% of herds had one period of continuous testing (no testing lapse). The percentage of herds with testing lapses decreased as the number of lapses increased and as the initial test year became more recent; overall, only 1.5% of herds had more than 6 continuous testing periods. For herds that terminated DHI testing from 1960 through 2002, 64% were on continuous test for <3 yr. In general, herd frequencies decreased as continuous test period increased except for continuous testing of > or =20 yr, which increased to 13% for years 2000 to 2002. Herds with more recent termination dates had remained on continuous test longer, and one-third of herds that were still on test after June 2002 had been on test for at least 20 yr. The duration of herd participation was longest for the northeastern and mideastern United States and shortest for the southeastern United States. Multiple periods of testing with lapses of >6 mo between test periods represent a loss of data that could have enhanced the study and evaluation of genetic characteristics of US dairy cattle.  相似文献   

18.
The main objective of this study was to investigate the benefit of accuracy of genomic prediction when combining records for an intermediate physiological phenotype in a training population with records for a traditional phenotype. Fertility was used as a case study, where commencement of luteal activity (C-LA) was the physiological phenotype, whereas the interval from calving to first service and calving interval were the traditional phenotypes. The potential accuracy of across-country genomic prediction and optimal recording strategies of C-LA were also investigated in terms of the number of farms and number of repeated records for C-LA. Predicted accuracy was obtained by estimating population parameters for the traits in a data set of 3,136 Holstein Friesian cows with 8,080 lactations and using a deterministic prediction equation. The effect of genetic correlation, heritability, and reliability of C-LA on the accuracy of genomic prediction were investigated. When the existing training population was 10,000 bulls with reliable estimated breeding value for the traditional trait, predicted accuracy for the physiological trait increased from 0.22 to 0.57 when 15,000 cows with C-LA records were added to the bull training population; but, when the interest was in predicting the traditional trait, we found no benefit from the additional recording. When the genetic correlation was higher between the physiological and traditional traits (0.7 instead of 0.3), accuracy increased less when adding the 15.000 cows with C-LA (from 0.51 to 0.63). In across-country predictions, we observed little to no increase in accuracy of the intermediate physiological phenotype when the training population from Sweden was large, but when accuracy increased the training population was small (200 cows), from 0.19 to 0.31 when 15,000 cows were added from the Netherlands (genetic correlation of 0.5 between countries), and from 0.19 to 0.48 for genetic correlation of 0.9. The predicted accuracy initially increased substantially when recording on the same farm was extended and multiple C-LA records per cow were used in prediction compared with single records; that is, accuracy increased from 0.33 with single records to 0.38 with multiple records (on average 1.6 records per cow) from 2 yr of recording C-LA. But, when the number C-LA per cow increased beyond 2 yr of recording, we noted no substantial benefit in accuracy from multiple records. For example, for 5 yr of recording (on average 2.5 records per cow), accuracy was 0.47; on doubling the recording period to 10 yr (on average 3.1 records per cow), accuracy increased by 0.07 units, whereas when C-LA was recorded for 15 yr (on average 3.3 records per cow) accuracy increased only by 0.05 units. Therefore, for genomic prediction using expensive equipment to record traits for training populations, it is important to optimize the recording strategy. The focus should be on recording more cows rather than continuous recording on the same cows.  相似文献   

19.
This paper describes a series of field studies aimed at identifying the spatial distribution and flow forcing of fecal indicator bacteria in dry and wet weather runoff from the Talbert watershed, a highly urbanized coastal watershed in southern California. Runoff from this watershed drains through tidal channels to a popular public beach, Huntington State Beach, which has experienced chronic surf zone water quality problems over the past several years. During dry weather, concentrations of fecal indicator bacteria are highest in inland urban runoff, intermediate in tidal channels harboring variable mixtures of urban runoff and ocean water, and lowest in ocean water at the base of the watershed. This inland-to-coastal gradient is consistent with the hypothesis that urban runoff from the watershed contributes to coastal pollution. On a year round basis, the vast majority (>99%) of fecal indicator bacteria loading occurs during storm events when runoff diversions, the management approach of choice, are not operating. During storms, the load of fecal indicator bacteria in runoff follows a power law of the form L approximately Qn, where L is the loading rate (in units of fecal indicator bacteria per time), Q is the volumetric flow rate (in units of volume per time), and the exponent n ranges from 1 to 1.5. This power law and the observed range of exponent values are consistent with the predictions of a mathematical model that assumes fecal indicator bacteria in storm runoff originate from the erosion of contaminated sediments in drainage channels or storm sewers. The theoretical analysis, which is based on a conventional model for the shear-induced erosion of particles from land and channel-bed surfaces, predicts that the magnitude of the exponent n reflects the geometry of the stormwater conveyance system from which the pollution derives. This raises the possibility that the scaling properties of pollutants in stormwater runoff (i.e., the value of n) may harbor information about the origin of nonpoint source pollution.  相似文献   

20.
Carbon Capture and Storage may use deep saline aquifers for CO(2) sequestration, but small CO(2) leakage could pose a risk to overlying fresh groundwater. We performed laboratory incubations of CO(2) infiltration under oxidizing conditions for >300 days on samples from four freshwater aquifers to 1) understand how CO(2) leakage affects freshwater quality; 2) develop selection criteria for deep sequestration sites based on inorganic metal contamination caused by CO(2) leaks to shallow aquifers; and 3) identify geochemical signatures for early detection criteria. After exposure to CO(2), water pH declines of 1-2 units were apparent in all aquifer samples. CO(2) caused concentrations of the alkali and alkaline earths and manganese, cobalt, nickel, and iron to increase by more than 2 orders of magnitude. Potentially dangerous uranium and barium increased throughout the entire experiment in some samples. Solid-phase metal mobility, carbonate buffering capacity, and redox state in the shallow overlying aquifers influence the impact of CO(2) leakage and should be considered when selecting deep geosequestration sites. Manganese, iron, calcium, and pH could be used as geochemical markers of a CO(2) leak, as their concentrations increase within 2 weeks of exposure to CO(2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号