首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of synthetic Fe(III) oxides and highly Fe(II) oxide-enriched (18-35 wt % Fe) Atlantic coastal plain sediments. In contrast, long-term (20-60 d) U(VI) reduction was less than 30% in suspensions of six other natural solids with relatively low Fe(III) oxide content (1-5 wt % Fe). Fe(II) sorption site density was severalfold lower on these natural solids (0.2-1.1 Fe(II) nm(-2)) compared tothe synthetic Fe(lII) oxides (1.6-3.2 Fe(II) nm(-2)), which may explain the poor U(VI) reduction in the natural solid-containing systems. Addition of the reduced form of the electron shuttling compound anthrahydroquinone-2,6-disulfonate (AH2DS; final concentration 2.5 mM) to the natural solid suspensions enhanced the rate and extent of U(VI) reduction, suggesting that AH2DS reduced U(VI) at surface sites where reaction of U(VI) with sorbed Fe(II) was limited. This study demonstrates that abiotic, Fe(II)-driven U(VI) reduction is likely to be less efficient in natural soils and sediments than would be inferred from studies with synthetic Fe(III) oxides.  相似文献   

2.
Biogeochemical iron cycling often generates systems where aqueous Fe(II) and solid Fe(III) oxides coexist. Reactions between these species result in iron oxide surface and phase transformations, iron isotope fractionation, and redox transformations of many contaminant species. Fe(II)-induced recrystallization of goethite and hematite has recently been shown to cause the repartitioning of Ni(II) at the mineral-water interface, with adsorbed Ni incorporating into the iron oxide structure and preincorporated Ni released back into aqueous solution. However, the effect of Fe(II) on the fate and speciation of redox inactive species incompatible with iron oxide structures is unclear. Arsenate sorption to hematite and goethite in the presence of aqueous Fe(II) was studied to determine whether Fe(II) causes substantial changes in the sorption mechanisms of such incompatible species. Sorption isotherms reveal that Fe(II) minimally alters macroscopic arsenate sorption behavior except at circumneutral pH in the presence of elevated concentrations (10?3 M) of Fe(II) and at high arsenate loadings, where a clear signature of precipitation is observed. Powder X-ray diffraction demonstrates that the ferrous arsenate mineral symplesite precipitates under such conditions. Extended X-ray absorption fine structure spectroscopy shows that outside this precipitation regime arsenate surface complexation mechanisms are unaffected by Fe(II). In addition, arsenate was found to suppress Fe(II) sorption through competitive adsorption processes before the onset of symplesite precipitation. This study demonstrates that the sorption of species incompatible with iron oxide structure is not substantially affected by Fe(II) but that such species may potentially interfere with Fe(II)-iron oxide reactions via competitive adsorption.  相似文献   

3.
Arsenic removal by passive treatment, in which naturally present Fe(II) is oxidized by aeration and the forming iron(III) (hydr)oxides precipitate with adsorbed arsenic, is the simplest conceivable water treatment option. However, competing anions and low iron concentrations often require additional iron. Application of Fe(II) instead of the usually applied Fe(III) is shown to be advantageous, as oxidation of Fe(II) by dissolved oxygen causes partial oxidation of As(III) and iron(III) (hydr)oxides formed from Fe(II) have higher sorption capacities. In simulated groundwater (8.2 mM HCO3(-), 2.5 mM Ca2+, 1.6 mM Mg2+, 30 mg/L Si, 3 mg/L P, 500 ppb As(III), or As(V), pH 7.0 +/- 0.1), addition of Fe(II) clearly leads to better As removal than Fe(III). Multiple additions of Fe(II) further improved the removal of As(II). A competitive coprecipitation model that considers As(III) oxidation explains the observed results and allows the estimation of arsenic removal under different conditions. Lowering 500 microg/L As(III) to below 50 microg/L As(tot) in filtered water required > 80 mg/L Fe(III), 50-55 mg/L Fe(II) in one single addition, and 20-25 mg/L in multiple additions. With As(V), 10-12 mg/L Fe(II) and 15-18 mg/L Fe(III) was required. In the absence of Si and P, removal efficiencies for Fe(II) and Fe(III) were similar: 30-40 mg/L was required for As(II), and 2.0-2.5 mg/L was required for As(V). In a field study with 22 tubewells in Bangladesh, passive treatment efficiently removed phosphate, but iron contents were generally too low for efficient arsenic removal.  相似文献   

4.
Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occurs near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.  相似文献   

5.
Using the isotope specificity of 57Fe M?ssbauer spectroscopy, we report spectroscopic observations of Fe(II) reacted with oxide surfaces under conditions typical of natural environments (i.e., wet, anoxic, circumneutral pH, and about 1% Fe(II)). M?ssbauer spectra of Fe(II) adsorbed to rutile (TiO2) and aluminum oxide (Al2O3) show only Fe(II) species, whereas spectra of Fe(II) reacted with goethite (alpha-FeOOH), hematite (alpha-Fe2O3), and ferrihydrite (Fe5HO8) demonstrate electron transfer between the adsorbed Fe(II) and the underlying iron(III) oxide. Electron-transfer induces growth of an Fe(III) layer on the oxide surface that is similar to the bulk oxide. The resulting oxide is capable of reducing nitrobenzene (as expected based on previous studies), but interestingly, the oxide is only reactive when aqueous Fe(II) is present. This finding suggests a novel pathway for the biogeochemical cycling of Fe and also raises important questions regarding the mechanism of contaminant reduction by Fe(II) in the presence of oxide surfaces.  相似文献   

6.
Fe(II) present at surfaces of iron-containing minerals can play a significant role in the overall attenuation of reducible contaminants in the subsurface. As the chemical environment, i.e., the type and arrangement of ligands, strongly affects the redox potential of Fe(II), the presence of various mineral sorbents is expected to modulate the reactivity of surficial Fe(II)-species in aqueous systems. In a comparative study we evaluated the reactivity of ferrous iron in aqueous suspensions of siderite (FeCO3), nontronite (ferruginous smectite SWa-1), hematite (alpha-Fe2O3), lepidocrocite (gamma-FeOOH), goethite (alpha-FeOOH), magnetite (Fe3O4), sulfate green rust (Fe(II)4Fe(III)2(OH)12SO4 x 4H2O), pyrite (FeS2), and mackinawite (FeS) under similar conditions (pH 7.2, 25 m2 mineral/L, 1 mM Fe(II)aq, O2 (aq) < 0.1 g/L). Surface-area-normalized pseudo first-order rate constants are reported for the reduction of hexachloroethane and 4-chloronitrobenzene representing two classes of environmentally relevant transformation reactions of pollutants, i.e., dehalogenation and nitroaryl reduction. The reactivities of the different Fe(II) mineral systems varied greatly and systematically both within and between the two data sets obtained with the two probe compounds. As a general trend, surface-area-normalized reaction rates increased in the order Fe(II) + siderite < Fe(II) + iron oxides < Fe(II) + iron sulfides. 4-Chloronitrobenzene was transformed by mineral-bound Fe(II) much more rapidly than hexachloroethane, except for suspensions of hematite, pyrite, and nontronite. The results demonstrate that abiotic reactions with surface-bound Fe(II) may affect or even dominate the long-term behavior of reducible pollutants in the subsurface, particularly in the presence of Fe(III) bearing minerals. As such reactions can be dominated by specific interactions of the oxidant with the surface, care must be taken in extrapolating reactivity data of surface-bound Fe(II) between different compound classes.  相似文献   

7.
We collected M?ssbauer spectra of 57Fe(II) interacting with 56hematite (alpha-Fe2O3) over a range of Fe(II) concentrations and pH values to explore whether a sorbed Fe(II) species would form. Several models of Fe(II) sorption (e.g., surface complexation models) assume that stable, sorbed Fe(II) species form on ligand binding sites of Fe(III) oxides and other minerals. Model predictions of changes in both speciation and concentration of sorbed Fe(II) species are often invoked to explain Fe(II) sorption patterns, as well as rates of contaminant reduction and microbial respiration of Fe(III) oxides. Here we demonstrate that, at low Fe(II) concentrations, sorbed Fe(II) species are transient and quickly undergo interfacial electron transfer with structural Fe(III) in hematite. At higher Fe(II) concentrations, however, we observe the formation of a stable, sorbed Fe(II) phase on hematite that we believe to be the first spectroscopic confirmation for a sorbed Fe(II) phase forming on an iron oxide. Low-temperature M?ssbauer spectra suggest that the sorbed Fe(II) phase contains varying degrees of Fe(II)-Fe(II) interaction and likely contains a mixture of adsorbed Fe(II) species and surface precipitated Fe(OH)2(s). The transition from Fe(II)-Fe(III) interfacial electron transfer to formation of a stable, sorbed Fe(II) phase coincides with the macroscopically observed change in isotherm slope, as well as the estimated surface site saturation suggesting that the finite capacity for interfacial electron transfer is influenced by surface properties. The spectroscopic demonstration of two distinctly different sorption endpoints, that is an Fe(III) coating formed from electron transfer or a stable, sorbed Fe(II) phase, challenges us to reconsider our traditional interpretations and modeling of Fe(II) sorption behavior (as well as, we would argue, of any other redox active sorbate-sorbent couple).  相似文献   

8.
The effects of iron and manganese (hydr)oxide formation processes on the trace metal adsorption properties of these metal (hydr)oxides and their mixtures was investigated by measuring lead adsorption by iron and manganese (hydr)oxides prepared by a variety of methods. Amorphous iron (hydr)oxide formed by fast precipitation at pH 7.5 exhibited greater Pb adsorption (gamma(max) = 50 mmol of Pb/mol of Fe at pH 6.0) than iron (hydr)oxide formed by slow, diffusion-controlled oxidation of Fe(II) at pH 4.5-7.0 or goethite. Biogenic manganese(III/IV) (hydr)oxide prepared by enzymatic oxidation of Mn(II) by the bacterium Leptothrix discophora SS-1 adsorbed five times more Pb (per mole of Mn) than an abiotic manganese (hydr)oxide prepared by oxidation of Mn(II) with permanganate, and 500-5000 times more Pb than pyrolusite oxides (betaMnO2). X-ray crystallography indicated that biogenic manganese (hydr)oxide and iron (hydr)oxide were predominantly amorphous or poorly crystalline and their X-ray diffraction patterns were not significantly affected by the presence of the other (hydr)oxide during formation. When iron and manganese (hydr)oxides were mixed after formation, or for Mn biologically oxidized with iron(III) (hydr)oxide present, observed Pb adsorption was similar to that expected for the mixture based on Langmuir parameters for the individual (hydr)oxides. These results indicate that interactions in iron/manganese (hydr)oxide mixtures related to the formation process and sequence of formation such as site masking, alterations in specific surface area, or changes in crystalline structure either did not occur or had a negligible effect on Pb adsorption by the mixtures.  相似文献   

9.
Under oxic conditions, Tc exists as the soluble, weakly sorbing pertechnetate [TcO4-] anion. The reduced form of technetium, Tc(IV), is stable in anoxic environments and is sparingly soluble as TcO2 x nH2O(s). Here we investigate the heterogeneous reduction of Tc(VII) by Fe(II) adsorbed on Al (hydr)oxides [diaspore (alpha-AlOOH) and corundum (alpha-Al2O3)]. Experiments were performed to study the kinetics of Tc(VII) reduction, examine changes in Fe surface speciation during Tc(VII) reduction (M?ssbauer spectroscopy), and identify the nature of Tc(IV)-containing reaction products (X-ray absorption spectroscopy). We found that Tc(VII) was completely reduced by adsorbed Fe(II) within 11 (diaspore suspension) and 4 days (corundum suspension). M?ssbauer measurements revealed thatthe Fe(II) signal became less intense with Tc(VII) reduction and was accompanied by an increase in the intensity of the Fe(III) doublet and magnetically ordered Fe(III) sextet signals. Tc-EXAFS spectroscopy revealed that the final heterogeneous redox product on corundum was similar to Tc(IV) oxyhydroxide, TcO2 x nH2O.  相似文献   

10.
Zerovalent iron (Fe0) has tremendous potential as a remediation material for removal of arsenic from groundwater and drinking water. This study investigates the speciation of arsenate (As(V)) and arsenite (As(III)) after reaction with two Fe0 materials, their iron oxide corrosion products, and several model iron oxides. A variety of analytical techniques were used to study the reaction products including HPLC-hydride generation atomic absorption spectrometry, X-ray diffraction, scanning electron microscopy-energy-dispersive X-ray analysis, and X-ray absorption spectroscopy. The products of corrosion of Fe0 include lepidocrocite (gamma-FeOOH), magnetite (Fe3O4), and/or maghemite (gamma-Fe2O3), all of which indicate Fe(II) oxidation as an intermediate step in the Fe0 corrosion process. The in-situ Fe0 corrosion reaction caused a high As(III) and As(V) uptake with both Fe0 materials studied. Under aerobic conditions, the Fe0 corrosion reaction did not cause As(V) reduction to As(III) but did cause As(III) oxidation to As(V). Oxidation of As(III) was also caused by maghemite and hematite minerals indicating that the formation of certain iron oxides during Fe0 corrosion favors the As(V) species. Water reduction and the release of OH- to solution on the surface of corroding Fe0 may also promote As(III) oxidation. Analysis of As(III) and As(V) adsorption complexes in the Fe0 corrosion products and synthetic iron oxides by extended X-ray absorption fine structure spectroscopy (EXAFS) gave predominant As-Fe interatomic distances of 3.30-3.36 A. This was attributed to inner-sphere, bidentate As(III) and As(V) complexes. The results of this study suggest that Fe0 can be used as a versatile and economical sorbent for in-situ treatment of groundwater containing As(III) and As(V).  相似文献   

11.
Nowadays there is a great concern on the study of new adsorbent materials for either the removal or fixation of arsenic species because of their high toxicity and the health problems associated to such substances. The present paper reports a basic study of the adsorption of arsenic inorganic species from aqueous solutions using an open-celled cellulose sponge with anion-exchange and chelating properties (Forager Sponge). Consequences of preloading the adsorbentwith Fe(III) to enhance the adsorption selectivity are discussed and compared with the nonloaded adsorbent properties. The interactions of arsenic species with the Fe(III)-loaded adsorbent are accurately determined to clarify the feasibility of an effective remediation of contaminated waters. Arsenate is effectively adsorbed by the nonloaded and the Fe(III)-loaded sponge in the pH range 2-9 (maximum at pH 7), whereas arsenite is only slightly adsorbed by the Fe(III)-loaded sponge in the pH range 5-10 (maximum at pH 9), being that the nonloaded sponge is unable to adsorb As(III). The maximum sorption capacities are 1.83 mmol As(V)/g (pH approximately 4.5) and 0.24 mmol As(lII)/g (pH approximately 9.0) for the Fe(III)-loaded adsorbent. This difference is explained in terms of the different acidic behavior of both arsenic species. The interaction of the arsenic species with the Fe(III) loaded in the sponge is satisfactorily modeled. A 1:1 Fe:As complex is found to be formed for both species. H2AsO4- and H3AsO3 are determined to be adsorbed on Fe(III) with a thermodynamic affinity defined by log K = 2.5 +/- 0.3 and log K = 0.53 +/- 0.07, respectively. As(V) is, thus, found to be more strongly adsorbed than As(III) on the Fe(III) loaded in the sponge. A significant enhancement on As(V) adsorption selectivity by loading Fe(III) in the sponge is observed, and the effectiveness of the Fe(III)-loaded sponge for the As(V) adsorption is demonstrated, even in the presence of high concentrations of interfering anions (chloride, nitrate, sulfate, and phosphate).  相似文献   

12.
Microbial dissimilatory iron reduction (DIR) is an important pathway for carbon oxidation in anoxic sediments, and iron isotopes may distinguish between iron produced by DIR and other sources of aqueous Fe(II). Previous studies have shown that aqueous Fe(II) produced during the earliest stages of DIR has delta56Fe values that are 0.5-2.0%o lowerthan the initial Fe(III) substrate. The new experiments reported here suggest that this fractionation is controlled by coupled electron and Fe atom exchange between Fe(II) and Fe(III) at iron oxide surfaces. In hematite and goethite reduction experiments with Geobacter sulfurreducens, the 56Fe/54Fe isotopic fractionation between aqueous Fe(II) and the outermost layers of Fe(III) on the oxide surface is approximately -3%o and can be explained by equilibrium Fe isotope partitioning between reactive Fe(II) and Fe(III) pools that coexist during DIR. The results indicate that sorption of Fe(II) to Fe(III) substrates cannot account for production of low-delta56Fe values for aqueous Fe(II) during DIR.  相似文献   

13.
Mineral processing effluents generated in hydrometallurgical industrial operations are sulfate based; hence it is of interest to investigate the effect sulfate matrix solution ("sulfate media") has on arsenate adsorption onto ferrihydrite. In this work, in particular, the influence of media (SO4(2-) vs NO3-), added gypsum, and pH alteration on the adsorption of arsenate onto ferrihydrite has been studied. The ferrihydrite precipitated from sulfate solution incorporated a significant amount of sulfate ions and showed a much higher adsorption capacityfor arsenate compared to nitrateferrihydrite at pH 3-8 and initial Fe/As molar ratios of 2, 4, and 8. Adsorption of arsenate onto sulfate-ferrihydrite involved ligand exchange with SO4(2-) ions that were found to be more easily exchangeable with increasing pH. Added gypsum to the adsorption system significantly enhanced the uptake of arsenate by ferrihydrite at pH 8. Equilibration treatment at acidic pH and addition of gypsum markedly improved the stability of adsorbed arsenate on ferrihydrite when pH was elevated. Comparison of arsenate adsorption onto ferrihydrite to coprecipitation of arsenate with iron(III) showed the latter process to lead to higher arsenic removal.  相似文献   

14.
Bacillus subtilis is a spore forming bacterium that takes up both inorganic As(III) and As(V). Incubating the bacteria with Fe(III) causes iron uptake (up to ~0.5% w/w), and some of the iron attaches to the cell membrane as hydrous ferric oxide (HFO) with additional HFO as a separate phase. Remarkably, 30% of the Bacillus subtilis cells remain viable after treatment by 8 mM Fe(III). At pH 3, upon metalation, As(III) binding capacity becomes ~0, while that for As(V) increases more than three times, offering an unusual high selectivity for As(V) against As(III). At pH 10 both arsenic forms are sorbed, the As(V) sorption capacity of the ferrated Bacillus subtilis is at least of 11 times higher than that of the native bacteria. At pH 8 (close to pH of most natural water), the arsenic binding capacity per mole iron for the ferrated bacteria is greater than those reported for any iron containing sorbent. A sensitive arsenic speciation approach is thus developed based on the binding of inorganic arsenic species by the ferrated bacteria and its unusual high selectivity toward As(V) at low pH.  相似文献   

15.
For the long-term performance assessment of nuclear waste repositories, knowledge about the interactions of actinide ions with mineral surfaces such as iron oxides is imperative. The mobility of released radionuclides is strongly dependent on the sorption/desorption processes at these surfaces and on their incorporation into the mineral structure. In this study the interaction of Am(III) with 6-line-ferrihydrite (6LFh) was investigated by EXAFS spectroscopy. At low pH values (pH 5.5), as well at higher pH values (pH 8.0), Am(III) sorbs as a bidentate corner-sharing species onto the surface. Investigations of the interaction of Am(III) with Fh coated silica colloids prove the sorption onto the iron coating and not onto the silica substrate. Hence, the presence of Fh, even as sediment coating, is the dominant sorption surface. Upon heating, Fh is transformed into goethite and hematite as shown by TEM and IR measurements. The results of the fit to the EXAFS data indicate the release of sorbed Am(III) at pH 5.5 during the transformation and likely a partial incorporation of Am into the Fh transformation products at pH 8.0.  相似文献   

16.
The role of dissolved oxygen (DO2) on the oxidation of hydrosulfide ions (HS-; C(HS-)0 = 50-150 micromol/L) into polysulfides (S(n)2-; n = 2-9), colloidal sulfur, and oxysulfur species with iron(III) trans-1,2-diaminocyclohexanetetraacetate (iron(III)-cdta; C(Fe(III)0 = 50-300 micromol/L) complexes in alkaline solutions (pH 9-10.2) was investigated at 25 +/- 1 degree C. At higher pH, oxygen was seen to slow down the hydrosulfide conversion rate. For instance, the HS- half-life was 24.8 min in a DO2-saturated iron(III)-cdta solution compared to 11.3 min in the corresponding anoxic solution (pH 10.2, C(HS-)0 = 80 micromol/L, C(Fe(III))0 = 200 micromol/L). In anoxia, HS- oligomerizes into chain-like polysulfides which behave as autocatalysts on the HS- conversion rates. The presence of DO2 disrupts the HS- oligomerization process by generating thiosulfate precursors from polysulfides, a pathway that impedes the HS- uptake. At lower alkaline pH where the hydroxide-free Fe(3+)cdta(4-) is the prevailing iron(III)-cdta species, the "iron(II)-cdta + DO2" oxidative reaction becomes crucial. Oxidative regeneration of iron(III) as Fe(3+)cdta(4-) (being more reactive than Fe(3+)OH(-)cdta(4-)) offsets to some extent the restrictive role of oxygen on the accumulation of polysulfides. Thiosulfate and sulfate were the main end-products for the current experimental conditions to the detriment of colloidal sulfur, which did not form in DO2-saturated solutions.  相似文献   

17.
We have studied the immobilization of Sb(III) and Sb(V) by Al-rich phases - hydrous Al oxide (HAO), kaolinite (KGa-1b), and oxidized and reduced nontronite (NAu-1) - using batch experiments to determine the uptake capacity and the kinetics of adsorption and Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy to characterize the molecular environment of adsorbed Sb. Both Sb(III) and Sb(V) are adsorbed in an inner-sphere mode on the surfaces of the studied substrates. The observed adsorption geometry is mostly bidentate corner-sharing, with some monodentate complexes. The kinetics of adsorption is relatively slow (on the order of days), and equilibrium adsorption isotherms are best fit using the Freundlich model. The oxidation state of the structural Fe within nontronite affects the adsorption capacity: if the clay is reduced, the adsorption capacity of Sb(III) is slightly decreased, while Sb(V) uptake is increased significantly. This may be a result of the presence of dissolved Fe(II) in the reduced nontronite suspensions or associated with the structural rearrangements in nontronite due to reduction. These research findings indicate that Sb can be effectively immobilized by Al-rich phases. The increase in Sb(V) uptake in response to reducing structural Fe in clay can be important in natural settings since Fe-rich clays commonly go through oxidation-reduction cycles in response to changing redox conditions.  相似文献   

18.
The oxidation kinetics of As(III) with natural and technical oxidants is still notwell understood, despite its importance in understanding the behavior of arsenic in the environment and in arsenic removal procedures. We have studied the oxidation of 6.6 microM As(II) by dissolved oxygen and hydrogen peroxide in the presence of Fe(II,III) at pH 3.5-7.5, on a time scale of hours. As(III) was not measurably oxidized by O2, 20-100 microM H2O2, dissolved Fe(III), or iron(III) (hydr)-oxides as single oxidants, respectively. In contrast, As(III) was partially or completely oxidized in parallel to the oxidation of 20-90 microM Fe(II) by oxygen and by 20 microM H2O2 in aerated solutions. Addition of 2-propanol as an *OH-radical scavenger quenched the As(III) oxidation at low pH but had little effect at neutral pH. High bicarbonate concentrations (100 mM) lead to increased oxidation of As-(III). On the basis of these results, a reaction scheme is proposed in which H2O2 and Fe(II) form *OH radicals at low pH but a different oxidant, possibly an Fe(IV) species, at higher pH. With bicarbonate present, carbonate radicals might also be produced. The oxidant formed at neutral pH oxidizes As(III) and Fe(II) but does not react competitively with 2-propanol. Kinetic modeling of all data simultaneously explains the results quantitatively and provides estimates for reaction rate constants. The observation that As(III) is oxidized in parallel to the oxidation of Fe(II) by O2 and by H2O2 and that the As(III) oxidation is not inhibited by *OH-radical scavengers at neutral pH is significant for the understanding of arsenic redox reactions in the environment and in arsenic removal processes as well as for the understanding of Fenton reactions in general.  相似文献   

19.
Antimony is an element of growing interest for a variety of industrial applications, even though Sb compounds are classified as priority pollutants by the Environmental Protection Agency of the United States. Iron (Fe) hydroxides appear to be important sorbents for Sb in soils and sediments, but mineral surfaces can also catalyze oxidation processes and may thus mobilize Sb. The aim of this study was to investigate whether goethite immobilizes Sb by sorption or whether Sb(III) adsorbed on goethite is oxidized and then released. The sorption of both Sb(III) and Sb(V) on goethite was studied in 0.01 and 0.1 M KClO4 M solutions as a function of pH and Sb concentration. To monitor oxidation processes Sb species were measured in solution and in the solid phase. The results show that both Sb(III) and Sb(V) form inner-sphere surface complexes at the goethite surface. Antimony(III) strongly adsorbs on goethite over a wide pH range (3-12), whereas maximum Sb(V) adsorption is found below pH 7. At higher ionic strength, the desorption of Sb(V) is shifted to lower pH values, most likely due to the formation of ion pairs KSb(OH)6 degrees. The sorption data of Sb(V) can be fitted by the modified triple-layer surface complexation model. Within 7 days, Sb(III) adsorbed on goethite is partly oxidized at pH 3, 5.9 and 9.7. The weak pH-dependence of the rate coefficients suggests that adsorbed Sb(III) is oxidized by 02 and that the coordination of Sb(III) to the surface increases the electron density of the Sb atom, which enhances the oxidation process. At pH values below pH 7, the oxidation of Sb(III) did not mobilize Sb within 35 days, while 30% of adsorbed Sb(III) was released into the solution at pH 9.9 within the same time. The adsorption of Sb(III) on Fe hydroxides over a wide pH range may be a major pathway for the oxidation and release of Sb(V).  相似文献   

20.
This work examined the effect of sulfate ions on the rate of decomposition of H2O2 by Fe(III) in homogeneous aqueous solutions. Experiments were carried out at 25 degrees C, pH < or = 3 and the concentrations of sulfate ranged from 0 to 200 mM ([Fe(III)]0 = 0.2 or 1 mM, [H2O2]0 = 10 or 50 mM). The spectrophometric study shows that addition of sulfate decreased the formation of iron(III)-peroxo complexes and that H2O2 does not form complexes with iron(III)-sulfato complexes. The rates of decomposition of H2O2 markedly decreased in the presence of sulfate. The measured rates were accurately predicted by a kinetic model based on reactions previously validated in NaClO4/HClO4 solutions and on additional reactions involving sulfate ions and sulfate radicals. At a fixed pH, the pseudo-first-order rate constants were found to decrease linearly with the molar fraction of Fe(II) complexed with sulfate. The model was also able to predict the rate of oxidation of a probe compound (atrazine) by Fe(III)/H2O2. Computer simulations indicate that the decrease of the rate of oxidation of organic solutes by Fe(III)/H2O2 can be mainly attributed to the complexation of Fe(III) by sulfate ions, while sulfate radicals play a minor role on the overall reaction rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号