首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
金属膜电阻器用的靶材是影响膜质量和电阻器性能的重要因素之一,晶粒细化是炼制致密性靶材的关键.晶粒细化不仅有利于Cr-Si靶材内部组织均匀化,且能降低其韧脆转变温度,从而使炼制的靶材强度和硬度高、塑性好,提高靶材的成品率.分析了晶粒细化提高靶材综合性能的原因,并介绍了研究中所采用的Ti细化剂、磁力搅拌等晶粒细化措施.实验表明,在RJ24生产线上溅射的1 MΩ金属膜电阻器具有较好的性能,且电阻温度系数均小于20×10-6/℃.  相似文献   

2.
在用磁控溅射技术制备金属膜电阻器的生产过程中,靶材非常关键,它制约着金属膜电阻器的精度、可靠性、稳定性和电阻温度系数等性能.根据理论分析,提出了高稳定性的高阻靶材的最佳成分比例.自行设计了熔炼模壳及冷却方法,有效解决了因Si元素的脆性而引发的靶材开裂问题.溅射的金属膜电阻器,其高温储存试验、寿命试验、耐湿试验均达到了国家有关标准.  相似文献   

3.
在用磁控溅射技术制备金属膜电阻器的生产过程中,靶材非常关键,它制约着金属膜电阻器的精度、可靠性、稳定性和电阻温度系数等性能.根据理论分析,提出了高稳定性的高阻靶材的最佳成分比例.自行设计了熔炼模壳及冷却方法,有效解决了因Si元素的脆性而引发的靶材开裂问题.溅射的金属膜电阻器,其高温储存试验、寿命试验、耐湿试验均达到了国家有关标准.  相似文献   

4.
5.
溅射工艺影响金属膜电阻器的阻值和性能。讨论了阴极溅射原理,阴极溅射与辉光放电密切相关,实验结果表明,最佳溅射电流是0.15A,溅射时间是2h。  相似文献   

6.
7.
硅含量对真空熔炼电阻靶材和电阻薄膜性能的影响   总被引:2,自引:0,他引:2  
采用真空熔炼方法研制新型溅射用高阻靶材,并试验靶材含硅量对溅射电阻薄膜性能的影响。  相似文献   

8.
提高金属膜电阻器可靠性的途径   总被引:2,自引:0,他引:2  
介绍了采用射频反应工艺制备的AlN薄膜对金属膜电阻器性能的影响,通过功率老化、高温贮存试验和电阻温度系数的测量,结果表明在陶瓷基体上淀积AlN薄膜可以提高金属膜电阻器的可靠性。  相似文献   

9.
10.
热处理工艺影响金属膜电阻器的阻值和性能。本文分析了热处理过程中的退火效应、凝聚效应、扩散效应和氧化效应。实验结果表明,660%是最佳热处理温度。  相似文献   

11.
导致金属氧化膜电阻器失效的主要因素是膜层结构变化、电解和接触部分老化。为了减少失效,改善电阻温度系数α,在生产实践中控制工艺参数及关键工序(镀膜、热处理、刻槽、涂漆)的质量,其中重点是镀膜。通过调整镀膜靶材,H靶:α从大于150×10-6℃-1调整在±60×10-6℃-1之内;F靶:α从大于200×10-6℃-1调整在±120×10-6℃-1之内,提高了金属氧化膜电阻器的可靠性。  相似文献   

12.
透明导电膜及靶材   总被引:12,自引:0,他引:12  
韩雪  夏慧 《电子元件与材料》1998,17(1):30-32,35
透明导电膜在电气及光学领域的应用日益广泛。近年来以掺杂Sn的In2O3(简称ITO)开发和应用受到重视。用ISO靶通过溅射法制备ITO透明导电膜。由金属铟制取氧化铟粉末,后与氧化锡混合、压制烧结制出相对密度达95%的ITO靶材。  相似文献   

13.
In this paper, the temperature dependence of resistance of two generic RuO2-based resistors is investigated. The resistor compositions studied are 80 wt.% glass (63 wt.% PbO - 25 wt.% B2O3 - 12 wt.% SiO2, designated as G1) - 20 wt.% RuO2 and 80 wt.% glass (55.5 wt.% PbO - 22 wt.% B2O3 - 10.5 wt.% SiO2 - 12 wt.% Al2O3, designated as G2) - 20 wt.% RuO2. The sheet resistance of resistor 80 wt.% G1 - 20 wt.% RuO2 fired at 850° C decreases as the temperature is increased from 100 K to ∼400 K, remains a minimum value at temperatures 400 K ∼690 K, and then increases as the temperature is further raised. A negative temperature coefficient of resistance (TCR) of ∼-480 ppm/°C is obtained from 100 K to 500 K. TheTCR becomes less negative when temperature increases. Three models for conduction mechanism of thick film resistors are employed to explain the experimental results. A modified model, consisting of both tunneling and parallel conduction approaches, is proposed to elucidate the change in slope in the resistance-inverse temperature curve as well as the temperature dependence of the resistance. In addition, an equivalent circuit model is proposed to describe the electrical behavior of the thick film resistors.  相似文献   

14.
目前国内尚缺乏与LTCC相配套的厚膜电阻浆料。实验证明,厚膜电阻浆料的导电相、玻璃相及添加剂等对LTCC基板表面厚膜电阻在常温下的稳定性有一定影响。厚膜电阻浆料的膨胀系数随其导电相、玻璃相及添加剂的组分的变化而变化。当厚膜电阻浆料的热膨胀系数与LTCC基板的热膨胀系数之差异大到一定程度时,厚膜电阻在常温下的稳定性就会受到影响。X射线衍射图谱说明,厚膜电阻与LTCC基板之间生成的方石英相会降低厚膜电阻在常温下的稳定性。  相似文献   

15.
研究了液体环氧、粉末环氧包封高压高阻电阻器后,电阻器主要电性能的变化。根据使用需要模拟实际,将这种电阻器再灌封在回扫变压器(FBT)环氧料中,研究电阻器的性能变化。确定了粉末环氧包封的可行性。试验表明:粉末环氧包封层适应FBT灌封环氧的收缩应力。高压高阻电阻器采用粉末环氧包封工艺还可提高生产效率和包封外观的一致性。  相似文献   

16.
When electric resistivity of Thick Film Resistor (TFR) is adjusted to the desired value, laser beam is irradiated onto the resistor material so that a part of the resistor material is instantaneously vaporized and cut away. This conventional laser trimming method to adjust the resistivity of TFRs is an indispensable technique for manufacturing elec-tronic devices such as hybrid ICs. A peculiar phenomena was revealed by us, that is, when specially selected pulse laser beams were irradiated to TFR, the TFR was surface modified without cutting grooves, and then resistivity of the TFR was decreased. We completed the advanced laser process to apply this peculiar phenomena. 8 By comparing with conventional trimming processes, we can show prominent features of the advanced process, for example, resistivity of fine size TFR (300 micrometers-width and under) can be easily controlled. The decrease in resistivity of the TFR is considered to result from the decrease in specific resistivity of glass in the TFR. Because it is considered that the glass in the TFR is heavily doped with ruthenium impurities during the surface modification due to results of morphology observations and x-ray diffraction analysis. We have applied this advanced laser process to fine size TFR (300 micrometers-width), and developed high density hybrid ICs.  相似文献   

17.
基于旋磁基片设计并通过光刻工艺制作DC-10 GHz微波电阻器。通过HFSS仿真设计制作DC-10 GHz电阻器,采用磁控反应溅射制作TaN薄膜,电压驻波比VSWR均小于1.25。旋磁基片微波电阻器相对于应用广泛的氧化铝基片微波电阻器,可直接集成于同样以旋磁为基片的结环行器中,从而能制作出更加小型化的微波隔离器,有效减小器件体积,符合现代通信产品小型化、集成化的发展要求。  相似文献   

18.
A silver-based active (titanium-containing) brazing alloy, namely 63Ag-34.25Cu-1.75Ti-1.OSn, was found to serve as a totally metal (no glass) thick film conductor which exhibited lower electrical resistivity, much greater film/substrate adhesion, much lower porosity, similar solderability, and lower scratch resistance compared to the conventional silver-glass thick film. The brazing alloy film was formed by screen printing a paste containing the alloy particles and then firing at 880°C in vacuum.  相似文献   

19.
The electrical properties of tungsten-titanium (W:Ti) thin film resistors sputtered in an argon-nitrogen atmosphere were investigated. The resistivity ρ and the thermal coefficient of resistivity α were calculated as a function of film thickness and nitrogen content. A bulk resistivity of 70±4 μΩ-cm and the mean free path λo), of 0.8±0.1 μm were obtained for samples sputtered without nitrogen. The authors believe this to be the first report for the value of the λo in sputtered W:Ti. By appropriately controlling the nitrogen content during sputtering, it is possible to vary the value of α from positive to negative. It was found that α decreases with the nitrogen content and is zero at 0.5% N2. This added degree of freedom in controlling α allows the integrated circuit designer to compensate the thermal effects within a circuit by customizing the resistor parameters without significant layout modifications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号