首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrical properties of the (Na0.6Ag0.4)2PbP2O7 compound were studied using the complex impedance spectroscopy in the temperature range (502-667 K). Grain interior, grain boundary and electrode-material interface contributions to the electrical response are identified by the analysis of complex plan diagrams. The imaginary part of the modulus at several temperatures shows a double relaxation peaks, furthermore suggesting the presence of grains and grain boundaries in the sample. An analysis of the dielectric constants ?′, ?″ and loss tangent tan(δ) with frequency shows a distribution of relaxation times. The dc conductivity of the material is thermally activated with an activation energy about 0.8 eV which is in the vicinity of the that obtained from tan(δ) (E = 0.7 eV) and modulus (Em = 0.68 eV) studies.  相似文献   

2.
Single-phase Bi0.85La0.1Ho0.05FeO3 multiferroic ceramics were prepared by a rapid liquid sintering method. The ceramics exhibited an obvious ferroelectric loop with a remnant polarization of 11.2 μC/cm2 and also showed weak ferromagnetism with the remnant magnetization of 0.179 emu/g at room temperature. A considerable enhancement of the polarization on magnetic poling and a dielectric anomaly in the vicinity of the antiferromagnetic transition temperature due to the intrinsic magnetoelectric coupling effect were observed in Bi0.85La0.1Ho0.05FeO3 ceramics. The dielectric constant for the Bi0.8La0.1Ho0.05FeO3 samples at room temperature decreases with increasing applied magnetic fields, and the coupling coefficient (?′(H) − ?′(0))/?′(0) reaches −1.04% at H = 10 kOe.  相似文献   

3.
Z-type hexaferrites doped with Nd3+, Ba3−xNdxCo2Fe24O41 (x = 0, 0.05, 0.10, 0.15, and 0.25), were prepared by solid-state reaction. The effect of the Nd3+ ions substitution for Ba2+ ions on the microstructure and electromagnetic properties of the samples was investigated. The results reveal that an important modification of microstructure, complex permeability, complex permittivity, and static magnetic properties can be obtained by introducing a relatively small amount of Nd3+ instead of Ba2+. SEM image shows that the grains of the ferrites doped with Nd3+ were smaller, more perfect and homogeneous than that of the pure ferrite. The real part (?′) of complex permittivity and imaginary part (?″) increase at first, and then decrease with increasing Nd content. At low frequency, the imaginary part μ″ of complex permeability decreases with Nd content and then increases when frequency is above 7.0 GHz. The magnetization (Ms) and the coercivity (Hc) are 79.38 emu g−1 and 36.94 Oe for Ba2.75Nd0.25Co2Fe24O41. The data of magnetism show that the ferrite doped with Nd3+ ions is a better soft magnetic material due to the higher magnetization and lower coercivity.  相似文献   

4.
Non-ohmic and dielectric properties of Ca2Cu2Ti4O12 (CaCu3Ti4O12/CaTiO3 composite) ceramics prepared by a polymer pyrolysis method (PP-ceramic samples) are investigated. The PP-ceramics show a highly dense structure and improved non-ohmic and dielectric properties compared to the ceramics obtained by a solid state reaction method (SSR-ceramic samples). ?′ (tan δ) of the PP-ceramic samples is found to be higher (lower) than that of the SSR-ceramic samples. Interestingly, the PP-ceramic sintered at 1050 °C for 10 h exhibits the high ?′ of 2530 with weak frequency dependence below 1 MHz, the low tan δ less than 0.05 in the frequency range of 160 Hz-177 kHz, and the little temperature coefficient, i.e., |Δ?′| ≤ 15 % in the temperature range from −55 to 85 °C. These results indicate that the CaCu3Ti4O12/CaTiO3 composite system prepared by PP method is a promising high-?′ material for practical capacitor application.  相似文献   

5.
Polycrystalline samples of BaFe0.5Nb0.5O3 and (1 − x)Ba(Fe0.5Nb0.5)O3-xSrTiO3 [referred as BFN and BFN-ST respectively] (x = 0.00, 0.15 and 0.20) have been synthesized by a high-temperature solid-state reaction technique. The XRD patterns of the BFN and BFN-ST at room temperature show a monoclinic phase. The microstructure of the ceramics was examined by the scanning electron microscopy (SEM) and shows the polycrystalline nature of the samples with different grain sizes, which are inhomogeneously distributed through the sample surface. Detailed studies of dielectric and impedance properties of the materials in a wide range of frequency (100 Hz-5 MHz) and temperatures (30-270 °C) showed that properties are strongly temperature and frequency dependent. Complex Argand plane plot of ?″ against ?′, usually called Cole-Cole plots is used to check the polydispersive nature of relaxation phenomena in above mentioned compounds. Relaxation phenomena of non-Debye type have been observed in the BFN and BFN-ST ceramics, as confirmed by the Cole-Cole plots.  相似文献   

6.
The behavior of dielectric and microwave properties against sintering temperature has been carried out on CaO-SiO2-B2O3 ceramic matrix composites with ZrO2 addition. The results indicated that ZrO2 addition was advantageous to improve the dielectric and microwave properties. X-ray diffraction (XRD) patterns show that the major crystalline β-CaSiO3 and a little SiO2 phase existed at the temperature ranging from 950 °C to 1050 °C. At 0.5 wt% ZrO2, CaO-SiO2-B2O3 ceramic matrix composites sintered at 1000 °C possess good dielectric properties: ?r = 5.85, tan δ = 1.59 × 10−4 (1 MHz) and excellent microwave properties: ?r = 5.52, Q · f = 28,487 GHz (11.11 GHz). The permittivity of Zr-doped CaO-SiO2-B2O3 ceramic matrix composites exhibited very little temperature dependence, which was less than ±2% over the temperature range of −50 to 150 °C. Moreover, the ZrO2-doped CaO-SiO2-B2O3 ceramic matrix composites have low permittivity below 5.5 over a wide frequency range from 20 Hz to 1 MHz.  相似文献   

7.
The effects of BaCu(B2O5) (BCB) additions on the sintering temperature and microwave dielectric properties of Li2MgTi3O8 ceramic have been investigated. The pure Li2MgTi3O8 ceramic shows a relative high sintering temperature (∼1000 °C) and good microwave dielectric properties as Q × f of 40,000 GHz, ?r of 27.2, τf of 2.6 ppm/°C. It was found that the addition of a small amount of BCB can effectively lower the sintering temperature of Li2MgTi3O8 ceramics from 1025 to 900 °C and induce no obvious degradation of the microwave dielectric properties. Typically, the 0.5 wt% BCB added Li2MgTi3O8 ceramic sintered at 900 °C for 2 h exhibited good microwave dielectric properties of Q × f = 36,200 GHz (f = 7.31 GHz), ?r = 26 and τf = −2 ppm/°C. Compatibility with Ag electrode indicates this material can be applied to low temperature-cofired ceramics (LTCC) devices.  相似文献   

8.
Ba1.6Sr1.4Fe2WO9 has been prepared in polycrystalline form by solid-state reaction method in air, and has been studied by X-ray powder diffraction method (XRPD), and high temperature Mössbauer and Raman spectroscopies. The crystal structure was resolved at room temperature by the Rietveld refinement method, and revealed that Ba1.6Sr1.4Fe2WO9 crystallizes in a tetragonal system, space group I4/m, with a = b = 5.6489(10)Å, c = 7.9833(2)Å and adopts a double perovskite-type A3B′2B″O9 (A = Ba, Sr; B′ = Fe/W, and B″ = Fe/W) structure described by the crystallographic formula (Ba1.07Sr0.93)4d(Fe0.744W0.256)2a(Fe0.585W0.415)2bO6. The structure contains alternating [(Fe/W)2aO6] and [(Fe/W)2bO6] octahedra. Mössbauer studies reveal the presence of iron in the 3+ oxidation state. The high temperature Mössbauer measurements showed a magnetic to paramagnetic transition around 405 ± 10 K. The transition is gradual over the temperature interval. The decrease in isomer shift is in line with the general temperature dependence. While the isomer shift is rather linear over the whole temperature range, the quadratic dipolar ΔE temperature dependence shows an abrupt change at 405 K. The latter results allow concluding that a temperature-induced phase transition had occurred. The high temperature Raman study confirms the Mössbauer results on the magnetic to paramagnetic transition.  相似文献   

9.
The real dielectric constant ?′ and complex dielectric constant ?″ of Cu1−xZnxFe2O4 have been measured at room temperature in the high frequency range 1 MHz to 1.8 GHz. At low frequencies the dielectric loss is found to be constant up to 1.4 GHz and there is a sudden rise at 1.5 GHz. A qualitative explanation is given for the composition, frequency dependence of the dielectric constant and dielectric loss of Cu1−xZnx Fe2O4. These are correlated with the W-H plot which gives the information about change in the average crystal size and strain of the samples. The micro-morphological features of the samples were obtained by Scanning Electron Microscopy (SEM). The micrograph shows that the increase of the Zn content in Cu ferrite increases the grain size.  相似文献   

10.
Microstructure and microwave dielectric properties of Mg-substituted ZnNb2O6-TiO2 microwave ceramics were investigated. Mg acted as a grain refining reagent and columbite phase stabilization reagent. With an increasing Mg content, the amount of ixiolite (Zn, Mg) TiNb2O8 decreased, and the amount of (Zn0.9Mg0.1)0.17Nb0.33Ti0.5O2 and columbite increased. ZnO-Nb2O5-1.75TiO2-5 mol.%MgO exhibited excellent dielectric properties (at 950 °C): ?r = 35.6, Q × f = 16,000 GHz (at 5.6 GHz) and τf = −10 ppm/°C. The material was applied successfully to make RF/microwaves ceramic capacitor, whose self-resonance frequency was 19 GHz at low capacitance of 0.13 pF.  相似文献   

11.
Polycrystalline samples of Ho doped BiFeO3 were prepared by solid state reaction method and effect of partial substitution of Ho on dielectric, magnetic and ferroelectric properties was studied. High temperature dielectric results show two dielectric anomalies both in ? and tan δ, out of which, anomaly at higher temperature (∼400 °C) could be ascribed to antiferromagnetic Néel temperature which, is a signature of magnetoelectric coupling. The magnetic moment is greatly improved and the maximum magnetization was found to be 0.736 emu/g. Saturated ferroelectric hysteresis loops were observed for Bi0.95Ho0.05FeO3 with remnant polarization (Pr) = 1.59 μC/cm2, maximum polarization (Pmax) = 2.56 μC/cm2 and coercivity (Ec) = 5.45 kV/cm. We have conducted comprehensive magnetoelectric and magnetodielectric properties at room temperature. Magnetic field induced ferroelectric hysteresis loop observed in Bi0.95Ho0.05FeO3 is of prime importance.  相似文献   

12.
The crystal structures, phase compositions and the microwave dielectric properties of the xLa(Mg1/2Ti1/2)O3-(1 − x)Ca0.8Sr0.2TiO3 composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. Doping with B2O3 (0.5 wt.%) can effectively promote the densification and the dielectric properties of xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics. It is found that xNd(Mg1/2Ti1/2)O3-(1 − x)Ca0.6La0.8/3TiO3 ceramics can be sintered at 1375 °C, due to the liquid phase effect of B2O3 addition observed by Scanning Electronic Microscopy. At 1375 °C, 0.4Nd(Mg1/2Ti1/2)O3-0.6Ca0.6La0.8/3TiO3 ceramics with 1 wt.% B2O3 addition possesses a dielectric constant (?r) of 49, a Q × f value of 13,000 (at 8 GHz) and a temperature coefficients of resonant frequency (τf) of 1 ppm/°C. As the content of Nd(Mg1/2Ti1/2)O3 increases, the highest Q × f value of 20,000 GHz for x = 0.9 is achieved at the sintering temperature 1400 °C.  相似文献   

13.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8-xTiO2 composite ceramics with different weight percentages of BaCu(B2O5) additive prepared by solid-state reaction method have been investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the microwave dielectric properties were strongly dependent on densification, grain sizes and crystalline phases. The sintering temperature of ZnTiNb2O8 ceramics was reduced from 1250 °C to 950 °C by doping BaCu(B2O5) additive and the temperature coefficient of resonant frequency (τf) was adjusted from negative value of −52 ppm/°C to 0 ppm/°C by incorporating TiO2. Addition of 2 wt% BaCu(B2O5) in ZnTiNb2O8-xTiO2 (x = 0.8) ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 38.89, Q × f = 14,500 GHz (f = 4.715 GHz) and τf = 0 ppm/°C, which represented very promising candidates as LTCC dielectrics for LTCC applications.  相似文献   

14.
Dielectric properties of Cu substituted Ni-Zn-Mg ferrite samples having the general formula Ni0.5−xCuxZn0.3Mg0.2Fe2O4 (where x = 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5) synthesized by Pramanik method are reported. The single phase formation of the ferrites was confirmed by XRD technique. The lattice parameter is found to increase with increase in Cu content. Average grain size, obtained from SEM micrographs, is found to increase with increase in Cu content. Dielectric parameters were measured as a function of frequency at room temperature as well as at higher temperatures. The variation in dielectric constant (?′) with temperature at four different fixed frequencies viz. 1 kHz, 10 kHz, 100 kHz, and 1 MHz was also studied. The room temperature dielectric constant (?′) and dielectric loss (tan δ) are found to decrease with increase in frequency. The ac conductivity (σac) is found to increase with increase in the frequency.  相似文献   

15.
The copper borate Li2Pb2CuB4O10 has been synthesized in air by the standard solid-state reaction at temperature in the range 550-650 °C and the structure of Li2Pb2CuB4O10 was determined by single-crystal X-ray diffraction. Li2Pb2CuB4O10 crystallizes in the monoclinic space group C2/c (no. 15) with a = 16.8419(12), b = 4.7895(4), c = 13.8976(10) Å, and β = 125.3620(10)°, V = 914.22(12) Å3, and Z = 4, as determined by single-crystal X-ray diffraction. The Li2Pb2CuB4O10 structure exhibits isolated units of stoichiometry [CuB4O10]6− that are built from CuO4 distorted square planes and triangular BO3 groups. The IR spectroscopy and thermal analysis investigations of Li2Pb2CuB4O10 are also presented.  相似文献   

16.
We have prepared BaCd2−xSrxFe16O27 (x = 0, 0.5, 1, 1.5 and 2.0) W-type hexagonal ferrites by standard ceramic method. In this work, the structural, dielectric and magnetic properties have been studied of the prepared samples. The XRD analysis of the samples reveals single phase behavior sintered at 1400 °C for 6 h. The saturation magnetization (Ms) shows increasing behavior with the increasing concentration of Sr2+. While the coercivity (Hc) decreases rapidly up to 409 G for x = 1.5 and then increases for (x > 1.5) due to the preference of Cd2+ for tetrahedral sites and the number of spin-down magnetic ions. The real and imaginary parts of the dielectric constant (?′,?″) and dielectric loss tangent (tan δ) are determined in the frequency range 0.1-107 Hz. It is observed that both the real and imaginary parts of the dielectric constant and tan δ decrease with the increasing concentration of Sr2+, which is due to the contribution of Cd2+ ions in addition to Fe3+ and Fe2+ ions to interfacial polarization.  相似文献   

17.
Mn4+, La3+ and Ho3+ doped MgAl2Si2O8-based phosphors were first synthesized by solid state reaction. They were characterized by thermogravimetry (TG), differential thermal analysis (DTA), X-ray powder diffraction (XRD), photoluminescence (PL) and scanning electron microscopy (SEM). The phosphors were obtained at about 1300 °C. They showed broad red and fuchsia-pink emission bands in the range of 610-715 nm and had a different maximum intensity when activated by UV illumination. Such a fuchsia-pink emission can be attributed to the intrinsic d-d transitions of Mn4+.  相似文献   

18.
Composite ceramics in the solid solution of Zrx(Zn1/3Nb2/3)1−xTiO4 (x = 0.1-0.4) have been prepared by the mixed oxide route. Formation of solid solution was confirmed by the X-ray diffraction patterns. The microwave dielectric properties, such as dielectric constant (?r), Q × f value and temperature coefficient of resonant frequency (τf) have been investigated as a function of composition and sintering temperature. With x increasing from 0.1 to 0.4, the dielectric constant decreases from 70.9 to 43.2, and the τf decreases from 105 to 55 ppm/°C. The Q × f value, however, increases with increasing x value to a maximum 26,600 GHz (at 6 GHz) at x = 0.3, and then decreases thereafter. For low-loss microwave applications, a new microwave dielectric material Zr0.3(Zn1/3Nb2/3)0.7TiO4, possessing a fine combination of microwave dielectric properties with a high ?r of 51, a high Q × f of 26,600 GHz (at 6 GHz) and a τf of 70 ppm/°C, is suggested.  相似文献   

19.
In this paper, the effect of α-Al2O3 on in situ synthesis low density O′-sialon multiphase ceramics was investigated. Thermodynamics analysis was used to illustrate the feasibility of synthesizing O′-sialon at a low temperature of 1420 °C. The crystalline phase and microstructure were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The actual substitution parameter x value of O′-sialon was estimated via lattice correction. The results showed that, O′-sialon multiphase ceramics with different x values could be synthesized successfully through varying α-Al2O3 content. Bulk densities of samples ranging from 1.64 to 2.11 g cm−3 were adjusted with the percentage of α-Al2O3 increasing from 5.21 wt.% to 15.62 wt.%. Formation of nearly single-phase O′-sialon was obtained in the sample containing 10.42 wt.% α-Al2O3. The actual substitution parameter x increased with the increase of α-Al2O3, whereas it was lower than the original designation, and the O′-sialon with a low x value was achieved.  相似文献   

20.
A ternary mixture BaCO3–Al2O3–SiO2 was mechanically activated for different lengths of time. Chemical composition of the mixture corresponded to BaAl2Si2O8–BAS. As a function of activation time, reaction course was followed in the temperature range 750–1200°C. Reaction of celsian formation was followed using thermogravimetry as well as conventional and high-temperature X-ray diffractometry. The obtained data show that reaction rate increases with prolonged activation time, under the same conditions of thermal treatment. Formation of hexacelsian via a series of solid state reactions involving Ba-silicates, was favoured with increasing activation time. Direct formation of monoclinic celsian was retarded, however, with prolonged activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号