共查询到14条相似文献,搜索用时 62 毫秒
1.
2.
3.
基于特征能量加权的红外与可见光图像融合 总被引:2,自引:0,他引:2
目前红外与可见光图像直接融合存在红外目标取舍和场景信息提取困难,结合非采样Contourlet的多尺度、多方向性和平移不变性的优点,本文提出了一种基于非采样Contourlet变换(NSCT)的红外与可见光图像融合方法.首先对源图像进行分解,然后低频子带通过构造基于区域的特征像素能量,进行加权融合,高频子带直接选用方差取大法融合.使用该算法进行了融合实验,并给出了融合质量评价.实验结果表明,本文提出的基于NSCT的图像融合算法在保留图像细节信息、增加信息量方面都有显著地提高. 相似文献
4.
为提高多目标优化算法的收敛精度和搜索性能,提出一种基于速度交流的多种群多目标粒子群算法。算法引入速度交流机制,将种群划分为多个子种群以实现速度信息共享,改善粒子单一搜索模式,提高算法的全局搜索能力。采用混沌映射优化惯性权重,提高粒子搜索遍历性和全局性,为降低算法在运行后期陷入局部最优Pareto前沿的可能性,对各个子种群执行不同的变异操作。将算法与NSGA-Ⅱ、SPEA2、Ab YSS、MOPSO、SMPSO和GWASF-GA先进多目标优化算法进行对比,实验结果表明:该算法得到的解集具有更好的收敛性和分布性。 相似文献
5.
基于NSCT和PCNN的红外与可见光图像融合方法 总被引:6,自引:2,他引:6
提出了一种基于非采样Contourlet变换(NSCT)和脉冲耦合神经网络(PCNN)的红外与可见光图像融合方法.首先用NSCT对已配准的源图像进行分解,得到低频子带系数和各带通子带系数;其次对低频子带系数采取一种基于边缘的方法以得到融合图像的低频子带系数;对各带通子带系数提出了一种改进的基于PCNN的图像融合方法来确定融合图像的各带通子带系数;最后经过NSCT逆变换得到融合图像.实验结果表明,本文方法优于Laplaeian方法、小波方法和传统的NSCT方法. 相似文献
6.
多传感器目标分类的数据融合方法 总被引:5,自引:1,他引:4
本文概述了多传感目标分类数据融合技术的概念,原理,结构和算法,揭示了它的实质,全面介绍了该技术目前在国内外的研究发展状况,指出存在问题,难点,并预测未来发展趋势,完整地展示这一研究领域的全貌。 相似文献
7.
针对粒子群优化算法容易陷入局部最优的问题,提出了一种基于粒子群优化与分解聚类方法相结合的多目标优化算法。算法基于参考向量分解的方法,通过聚类优选粒子策略来更新全局最优解。首先,通过每条均匀分布的参考向量对粒子进行聚类操作,来促进粒子的多样性。从每个聚类中选择一个具有最小聚合函数适应度值的粒子,以平衡收敛性和多样性。动态更新全局最优解和个体最优解,引导种群均匀分布在帕累托前沿附近。通过仿真实验,与4种粒子群多目标优化算法进行对比。实验结果表明,提出的算法在27个选定的基准测试问题中获得了20个反世代距离(IGD)最优值。 相似文献
8.
针对多聚焦图像融合存在的问题,提出一种基于非下采样Contourlet变换(NSCT)的多聚焦图像融合新方法。首先,采用NSCT对多聚焦图像进行分解;然后,对低频系数采用基于改进拉普拉斯能量和(SML)的视觉特征对比度进行融合,对高频系数采用基于二维Log-Gabor能量进行融合;最后,对得到的融合系数进行重构得到融合图像。实验结果表明,无论是运用视觉的主观评价,还是基于互信息、边缘信息保留值等客观评价标准,该文所提方法都优于传统的离散小波变换、平移不变离散小波变换、NSCT等融合方法。 相似文献
9.
10.
针对铅锌烧结过程综合透气性、烧结终点的优化具有强非线性、计算复杂等特点,提出了一种有效的多目标粒子群协同优化算法。首先,建立了有综合透气性、烧结终点两个目标的优化模型。接着,通过改进的约束比较方法、粒子极值选取方法,以及利用不同的粒子群来分别优化相应的变量,提出了一种改进的多目标粒子群协同优化算法。最后,利用提出的多目标优化算法进行综合透气性、烧结终点的优化。仿真结果表明,所提出的多目标优化算法能较好地解决综合透气性、烧结终点的优化问题。 相似文献
11.
非亚采样Contourlet 遥感图像融合 总被引:3,自引:2,他引:3
非亚采样 Contourlet 变换是在非亚采样塔型滤波器及非亚采样方向滤波器组的基础上建立起来的,它是一种移不变多方向多尺度图像表示方法.介绍了该变换的结构特点与系数分布特性,并研究了基于非亚采样Contourlet 变换的图像融合算法.该算法利用非亚采样Contourlet 的平移不变性以及NSCT 系数特点,有效准确地提取图像边缘与细节区域,并分别在高、低频域针对不同区域采用不同的融合方法,有效挖掘了待融合图像中的有效信息.这种具有多分辨率分析和多方向滤波特点的处理方法,提高了融合后遥感图像中的信息量和清晰度,对不同分辨率不同方向上的信息进行挖掘及融合,解决了传统小波融合算法中方向数目受限的不足.通过仿真实验与传统融合方法进行比较,验证了该方法的有效性和优越性. 相似文献
12.
K-均值聚类具有简单、快速的特点,因此被广泛应用于图像分割领域.但K-均值聚类容易陷入局部最优,影响图像分割效果.针对K-均值的缺点,提出一种基于随机权重粒子群优化(RWPSO)和K-均值聚类的图像分割算法RWPSOK.在算法运行初期,利用随机权重粒子群优化的全局搜索能力,避免算法陷入局部最优;在算法运行后期,利用K-均值聚类的局部搜索能力,实现算法快速收敛.实验表明:RWPSOK算法能有效地克服K-均值聚类易陷入局部最优的缺点,图像分割效果得到了明显改善;与传统粒子群与K-均值聚类混合算法(PSOK)相比,RWPSOK算法具有更好的分割效果和更高的分割效率. 相似文献
13.
14.
一种基于Directionlet变换的图像融合算法 总被引:3,自引:0,他引:3
为了提高图像融合效果,提出了一种基于Directionlet变换的图像融合算法.首先对已配准的待融合源图像由给定的生成矩阵分别进行陪集分解,得到每个陪集对应的子图;接着将每两个子图相减,得到源图像的高频和低频分量,其中边缘、纹理等奇异特征包含在高频分量中;然后对低频分量采用直接平均融合的方法进行系数选择,对高频分量选择子区域边缘信息较强的系数;最后,通过Directionlet陪集分解的反变换,得到融合后的图像.多聚焦图像融合实验表明,在主观视觉上,该算法明显更好地融合了边缘等图像特征,从而较好地保持了左右聚焦图像各自的细节信息;在客观评价上,通过熵、平均梯度、标准差和互信息量等性能参数比较,该方法也优于小波变换和其他的融合方法. 相似文献