首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The coating Cr3C2 with 50 wt.% Ni20Cr deposited by high velocity oxy-fuel (HVOF) spray process was characterized in detail to investigate the effect of annealing on the solid particle erosion behaviour and understand the influence of the binder properties. Systematic characterization of the coating was carried out using electron microscopy (scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electron probe microanalysis (EPMA)), X-ray diffraction (XRD), microindentation and nanoindentation techniques. The solid particle erosion tests were done on the as-sprayed coating and coatings annealed at 400 °C, 600 °C and 800 °C using silica erodent particles. The coefficient of restitution of the coated samples was also measured by WC ball impact tests to simulate dynamic impacts. The as-sprayed coating consisted of primary carbides and binder that was a mixture of amorphous and nanocrystalline phases. Annealing leads to recrystallisation of binder phase and precipitation of secondary carbides. The coating hardness and binder ductility change with annealing temperature. The erosion resistance improves with annealing up to 600 °C. In the as-sprayed coating, the amorphous phase, inter-splat boundaries and the elastic rebound characteristics affect the erosion response. While in the case of the coating annealed at 600 °C, the presence of ductile crystalline binder, fine carbide precipitates and embedment of erodent particles together improve solid particle erosion resistance.  相似文献   

2.
Ni-P and Ni-P-Al2O3 amorphous alloy coatings with 9.3 and 8.3 wt.% P respectively were obtained by autocatalytic deposition at 90 °C on carbon steel substrates. The effect of annealing temperature (100, 200, 300, 400 and 500 °C) upon the corrosion parameters of the coatings in artificial seawater with pH 5.0 and 8.1 at room temperature was evaluated by potentiodynamic polarisation and electrochemical impedance spectroscopy. It was found that deposits annealed at 400 and 500 °C presented an increase of the charge transfer resistance and negligible changes on samples annealed at lower temperature. Polarisation tests showed a charge transfer controlled anodic kinetics on both Ni-P and Ni-P-Al2O3 deposits and diffusion controlled cathodic reaction in artificial seawater at pH 5.0 and 8.1. The coatings did not present passive behaviour in the electrolytes and impedance measurements showed a single time constant for all cases with the lowest double layer capacitance (Cdl) for samples annealed at 400 and 500 °C. The best corrosion parameters were observed on Ni-P and Ni-P-Al2O3 coatings annealed at temperatures higher than 400 °C, which is the temperature where crystallisation of this kind of coatings takes place.  相似文献   

3.
Cobalt ferrite CoFe2O4 films were fabricated on SiO2/Si(1 0 0) by the sol-gel method. Films crystallized at/above 600 °C are stoichiometric as expected. With increase of the annealing temperature from 600 °C to 750 °C, the columnar grain size of CoFe2O4 film increases from 13 nm to 50 nm, resulting in surface roughness increasing from 0.46 nm to 2.55 nm. Magnetic hysteresis loops in both in-plane and out-of-plane directions, at different annealing temperatures, indicate that the films annealed at 750 °C exhibit obvious perpendicular magnetic anisotropy. Simultaneously, with the annealing temperature increasing from 600 °C to 750 °C, the out of plane coercivity increases from 1 kOe to 2.4 kOe and the corresponding saturation magnetization increases from 200 emu/cm3 to 283 emu/cm3. In addition, all crystallized films exhibit cluster-like structured magnetic domains.  相似文献   

4.
Stoichiometric compound of copper indium sulfur (CuIn5S8) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 Å. Thin films of CuIn5S8 were deposited onto glass substrates under the pressure of 10−6 Torr using thermal evaporation technique. CuIn5S8 thin films were then thermally annealed in air from 100 to 300 °C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn5S8 thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 °C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 104 cm−1 was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 °C. It was found that CuIn5S8 thin film is an n-type semiconductor at 300 °C.  相似文献   

5.
TiO2 thin films were deposited by DC reactive magnetron sputtering. Some TiO2 thin films samples were annealed for 5 min at different temperatures from 300 to 900 °C. The structure and optical properties of the films were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (SEM) and ultraviolet-visible (UV-vis) spectrophotometry, respectively. The influence of the annealing temperature on the structure and optical properties of the films was investigated. The results show that the as-deposited TiO2 thin films are mixtures of anatase and rutile phases, and possess the column-like crystallite texture. With the annealing temperature increasing, the refractive index and extinction coefficient increase. When the annealing temperature is lower than 900 °C, the anatase phase is the dominant crystalline phase; the weight fraction of the rutile phase does not increase significantly during annealing process. As the annealing temperature rises to 900 °C, the rutile phase with the large extinction coefficient becomes the dominant crystalline phase, and the columnar structure disappears. The films annealed at 300 °C have the best optical properties for the antireflection coatings, whose refractive index and extinction coefficient are 2.42 and 8 × 10−4 (at 550 nm), respectively.  相似文献   

6.
In0.82Ga0.18As epilayers were grown by LP-MOCVD on InP (1 0 0) substrates with two-step growth method. It was analyzed that growth temperature of buffer layer exerted an influence on its crystalline quality and optical property, which were characterized by X-ray diffraction, scanning electron microscopy, and photoluminescence. The experiments showed that the crystalline quality and the optical property of the In0.82Ga0.18As epilayers had close relation to the growth temperature of buffer layer and the optimum buffer's growth temperature was about 450 °C.  相似文献   

7.
Amorphous B4C films were prepared by magnetron sputtering of the hot-pressed B4C target in different regimes. Hardness, intrinsic stress and film structure were investigated in dependence on the annealing temperature in air.Changes in the film structure and composition were investigated by Raman spectroscopy, confocal microscopy, and electron probe microanalysis. It has been shown that an annealing at 500 °C for 1 h leads to stress reduction, slight thickness decrease and increase of film hardness. However already at 600 °C the film oxidation proceeds very intensively with formation of the phases of boron oxide and amorphous carbon in the surface layer. The thickness of the film decreases quickly.The film oxidation is accompanied by formation of numerous carbon hillocks and redistribution of film material after annealing in furnace at 500 and especially 600 °C. The oxidation of a-B4C films as well as of the crystalline bulk samples starts in some locations and has clearly pronounced heterogeneous character that indicates heterogeneous structure of amorphous films as well as of bulk crystalline samples.Annealing in air for a long period shifts down the onset of formation of hillocks to 400 °C and changes in film morphology to 300 °C. Thus the upper temperature limit for application of a-B4C films in air depends also on the exposure time at the operation temperature.  相似文献   

8.
Highly transparent, p-type conducting SnO2:Zn thin films are prepared from the thermal diffusion of a sandwich structure of Zn/SnO2/Zn multilayer thin films deposited on quartz glass substrate by direct current (DC) and radio frequency (RF) magnetron sputtering using Zn and SnO2 targets. The deposited films were annealed at various temperatures for thermal diffusion. The effect of annealing temperature and time on the structural, electrical and optical performances of SnO2:Zn films was studied. XRD results show that all p-type conducting films possessed polycrystalline SnO2 with tetragonal rutile structure. Hall effect results indicate that the treatment at 400 °C for 6 h was the optimum annealing parameters for p-type SnO2:Zn films which have relatively high hole concentration and low resistivity of 2.389 × 1017 cm− 3 and 7.436 Ω cm, respectively. The average transmission of the p-type SnO2:Zn films was above 80% in the visible light range.  相似文献   

9.
Face centered cubic (Al0.32Cr0.68)2O3 thin films have been annealed in the temperature range of 500–1000 °C during 2–8 h. The fcc structure of the film remains intact when annealed at temperatures up to 700 °C for 8 h. X-ray diffraction and transmission electron microscopy show the onset of phase transformation to corundum phase alloys in the sample annealed at 900 °C for 2 h, where annealing at 1000 °C for 2 h results in complete phase transformation to α-(Al0.32Cr0.68)2O3. In-plane and out-of-plane line scans performed in EDX TEM and θ/2θ XRD patterns did not show any phase separation into α-Cr2O3 and Al2O3 prior and after the annealing. The apparent activation energy of this process is 380–480 kJ/mol as determined by the Johnson–Mehl–Avrami model.  相似文献   

10.
The possibilities to grow crystalline complex InTaO4, InNbO4 and InVO4 coatings as well as single oxide layers In2O3, Ta2O5, Nb2O5, and VOx were investigated using aerosol assisted atmospheric pressure chemical vapour deposition technique. Indium(III) and niobium(IV) tetramethylheptanedionates, tantalum(V) tetraethoxyacethylacetonate and vanadium(III) acethylacetonate were used as precursors, monoglyme and toluene as solvents. The influence of deposition conditions and solution composition on elemental and phase compositions of layers was studied. Indium tantalate layers containing pure monoclinic InTaO4 phase were obtained ex-situ, i.e., after high-temperature (800 °C) annealing of layers grown at lower temperature (500 °C). Films containing pure orthorhombic indium vanadate or monoclinic indium niobate phase may be prepared using both in-situ (600 °C) or ex-situ (deposition at 400 °C, annealing at 800 °C) approaches. Under optimised deposition conditions and solution compositions, Ni-doped InVO4 and InTaO4 films were also deposited and their photocatalytic activity was tested.  相似文献   

11.
Thermal and microstructural characterization of the TeO2-WO3 binary system was accomplished by applying differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. Different compositions of the (1 − x)TeO2-xWO3 system, where x varies between 0.02 and 0.80 in molar ratio were studied. The samples were prepared by melting high purity powder mixtures of TeO2 and WO3 in a platinum crucible with a closed lid at 750 °C for 30 min and quenching in water bath. The glass forming range of the binary system was detected as 0.04 ≤ x ≤ 0.35 in molar ratio. As-cast samples were heat-treated above the crystallization peak temperatures at 550 °C for 24 h to obtain thermal stability and the phase stability of the binary system was investigated by performing systematical thermal, phase and microstructural characterizations with the heat-treated samples. The eutectic reaction of the binary system was detected at 617 ± 3 °C, the endothermic reaction indicating the phase transformation reaction of WO3 from orthorhombic to tetragonal was determined at 743 ± 1 °C. α-TeO2 and orthorhombic WO3 crystalline phases were found to be present in the final structure when the total crystallization was achieved. Microstructural characterization of the TeO2-WO3 system was realized for a wide compositional range for the first time in the literature.  相似文献   

12.
CuIn1−xGaxS2 (x = 0.5) flowers consisting of nanoflakes were successfully prepared by a biomolecule-assisted solvothermal route at 220 °C for 10 h, employing copper chloride, gallium chloride, indium chloride and l-cysteine as precursors. The biomolecule l-cysteine acting as sulfur source was found to play a very important role in the formation of the final product. The diameter of the CuIn0.5Ga0.5S2 flowers was 1-2 μm, and the thickness of the flakes was about 15 nm. The obtained products were characterized by X-ray diffraction (XRD), energy dispersion spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction spectroscopy (SAED), and UV-vis absorption spectroscopy. The influences of the reaction temperature, reaction time, sulfur source and the molar ratio of Cu-to-l-cysteine (reactants) on the formation of the target compound were investigated. The formation mechanism of the CuIn0.5Ga0.5S2 flowers consisting of flakes was discussed.  相似文献   

13.
Crystallization temperatures of the Sb2Te films increase remarkably from 139.4 °C to 223.0 °C as the N2 flow rates increasing from 0 sccm to 1.5 sccm. Electrical conduction activation energies for amorphous and crystalline states increase by doping nitrogen. A small amount of nitrogen atoms can locate at interstitial sites in the hexagonal structure, generating a strain field, and improving the thermal stability of amorphous state. The best 10-years lifetime at temperature up to 141 °C is found in Sb2TeN1 films. Doping excessively high nitrogen in Sb2Te film will form nitride and make Te separate out. As a result, the activation energy for crystallization decreases instead, accompanying with the deterioration of thermal stability. The power consumption of PCRAM test cell based on Sb2TeN1 film is ten times lower than that of PCRAM device using Ge2Sb2Te5 films.  相似文献   

14.
The phases, microstructure and microwave dielectric properties of ZnTiNb2O8-xTiO2 composite ceramics with different weight percentages of BaCu(B2O5) additive prepared by solid-state reaction method have been investigated using the X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the microwave dielectric properties were strongly dependent on densification, grain sizes and crystalline phases. The sintering temperature of ZnTiNb2O8 ceramics was reduced from 1250 °C to 950 °C by doping BaCu(B2O5) additive and the temperature coefficient of resonant frequency (τf) was adjusted from negative value of −52 ppm/°C to 0 ppm/°C by incorporating TiO2. Addition of 2 wt% BaCu(B2O5) in ZnTiNb2O8-xTiO2 (x = 0.8) ceramics sintered at 950 °C showed excellent dielectric properties of ?r = 38.89, Q × f = 14,500 GHz (f = 4.715 GHz) and τf = 0 ppm/°C, which represented very promising candidates as LTCC dielectrics for LTCC applications.  相似文献   

15.
Nanocrystalline SmCo6.8Zr0.2 permanent magnets are prepared by intensive milling and subsequent annealing. XRD patterns of the samples annealed at 600 °C and 700 °C show a single SmCo7 phase with TbCu7 structure, while the SmCo7 phase decomposes into a mixture of Sm2Co17 and Co23Zr6 phase at higher annealing temperatures. The highest coercivity and energy product of about 2.06 T and 9.5MGOe are obtained in the sample annealed at 700 °C for 10 min. Further analysis reveals that a very strong inter-grain exchange coupling is observed in samples annealed at 700 °C for 3 (SZ-3) and 10 (SZ-10) min, indicating by the high remanence ratio and positive δm in henkel-plot. It was supposed that the magnetization reversal process is controlled by domain wall pinning.  相似文献   

16.
TiAlSiN/Si3N4 multilayer coatings which have different separate layer thicknesses of TiAlSiN or Si3N4 were deposited onto glass sheets, single-crystal silicon wafers and polished WC-Co substrates by reactive magnetron co-sputtering. The morphology, crystalline structure and thickness of the as-prepared multilayer coatings were characterized by TEM, SEM, XRD and film thickness measuring instrument. The mechanical properties of the coatings were evaluated by a nanoindenter. The effects of monolayer thickness on the microstructure and properties of TiAlSiN/Si3N4 multilayer coatings were explored. The coatings showed the highest hardness when the thickness of Si3N4 and TiAlSiN monolayers was 0.33 nm and 5.8 nm, respectively. The oxidation characteristics of the coatings were studied at temperatures ranging from 700 °C to 900 °C for oxidation time up to 20 h in air. It was found that the coatings displayed good oxidation resistance.  相似文献   

17.
High-quality Zn-free and added GdPO4:Tb3 green phosphors, i.e., fine size as well as smooth and spherical morphologies, were synthesized by ultrasonic spray pyrolysis. The influence of Zn2+ content and annealing temperature on the photoluminescence properties of the GdPO4:Tb3 phosphors annealed at 800-1100 °C was investigated. The addition of Zn2+ for Gd3+ was highly effective for improving the photoluminescence properties of GdPO4:Tb3. The Zn added GdPO4:Tb3 phosphors with Zn/Gd = 0.045/0.805 showed the strongest emission of the prepared phosphors. The emission intensity at 544 nm for the GdPO4:Tb3 phosphors with Zn/Gd = 0.045/0.805 annealed at 900 °C was 496% stronger than that at 800 °C.  相似文献   

18.
X.H Wang 《Corrosion Science》2003,45(5):891-907
The isothermal oxidation behavior of bulk Ti3AlC2 has been investigated at 1000-1400 °C in air for exposure times up to 20 h by means of TGA, XRD, SEM and EDS. It has been demonstrated that Ti3AlC2 has excellent oxidation resistance. The oxidation of Ti3AlC2 generally followed a parabolic rate law with parabolic rate constants, kp that increased from 4.1×10−11 to 1.7×10−8 kg2 m−4 s−1 as the temperature increased from 1000 to 1400 °C. The scales formed at temperatures below 1300 °C were dense, adherent, resistant to cyclic oxidation and layered. The inner layer of these scales formed at temperatures below 1300 °C was continuous α-Al2O3. The outer layer changed from rutile TiO2 at temperatures below 1200 °C to a mixture of Al2TiO5 and TiO2 at 1300 °C. In the samples oxidized at 1400 °C, the scale consisted of a mixture of Al2TiO5 and, predominantly, α-Al2O3, while the adhesion of the scales to the substrates was less than that at the lower temperatures. Effect of carbon monoxide at scale/substrate was involved in the formation of the continuous Al2O3 layers.  相似文献   

19.
Thermal expansion analysis is applied to the study of phase segregation of Zr2Al4C5 at elevated temperatures (20-2000 °C) under flowing argon. Such information would be useful for the detection of phase decomposition temperature and thermal stability of materials. The detected phase-decomposition temperature of Zr2Al4C5 is approximately 1900 °C. The presented thermal expansion analysis results are in good agreement with the X-ray diffraction (XRD) and SEM results. The results indicate that Zr2Al4C5 is susceptible to decomposition through sublimation of high vapor pressure of Al and weaker covalent bonds between ZrC slabs and Al4C3 layers. Thus, minimal amounts of Al, Zr2Al3C5, Al4C3 and ZrC form on the surface layer. Zr2Al3C5 further decomposes to ZrC1 − x and Al4C3 at 2000 °C. However, the amount of decomposing phase slowly increases, and the structural shape of bulk Zr2Al4C5 ceramic is always kept stable during heat treatment.  相似文献   

20.
CoAl2O4 nanocrystals were synthesized by sol-gel method using citric acid as a chelating agent at low temperature. The as-synthesized samples were characterized by thermal analysis, X-ray powder diffraction, infrared spectroscopy and transmission electron microscopy. The results show that CoAl2O4 spinel is the only crystalline phase with a size of 10-30 nm in the temperature range 500-1000 °C. The temperature dependence of the distribution of Al3+ and Co2+ ions in the octahedral and tetrahedral sites in nanocrystals was investigated by X-ray photoelectron spectroscopy (XPS). It is observed that the inversion parameter decreases with increasing annealing temperature. Analysis of the absorption properties indicates that Co2+ ions are located in the tetrahedral sites as well as in the octahedral sites in the CoAl2O4 nanocrystals. The origin of the green color (300-500 nm absorption band) should be due to the octahedrally coordinated Co2+ ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号