首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The goal of this work was to identify potential host immune responses to thymidine kinase (TK) suicide gene-modified tumors undergoing chemoablation induced by the prodrug ganciclovir (GCV). The aims were to measure the efficacy and specificity of immunity induced against unmodified tumor, to identify qualitative or quantitative changes in the host response to TK+ tumors undergoing chemoablation that may contribute to the induction of antitumor immunity, and to compare critically the induction of immunity by chemoablation of TK-modified tumors with that of other methods of immunization in this tumor model and in response to other well-defined model antigens. Animals treated with TK+ tumors and GCV developed specific resistance to rechallenge with unmodified tumor. GCV induced significant tumor necrosis, which was associated with a pronounced host cell infiltrate composed of polymorphonuclear cells, both CD4+ and CD8+ T lymphocytes, and increased intratumoral IL-12. Cyclophosphamide-treated mice exhibited no such host response despite the induction of tumor necrosis. CTL responses to defined antigens in TK+ cells were greater in animals treated with prodrug than were those in animals not treated with prodrug but harboring live TK+ cells. Similar degrees of immunity were produced by immunization with irradiated cells.  相似文献   

2.
The antitumor effect of the combined transfer of a suicide gene and a cytokine gene was evaluated in the present study. Adenoviruses expressing Escherichia coli cytosine deaminase (AdCD) and adenoviruses expressing murine interleukin-2 (AdIL-2) were utilized for the treatment of established tumors. The mice were inoculated s.c. with FBL-3 erythroleukemia cells and 3 days later received an intratumoral injection of AdCD in the presence or absence of AdIL-2 followed by intraperitoneal 5-fluorocytosine (5-FC) administration. The results demonstrated that tumor-bearing mice treated with AdCD/5-FC in combination with AdIL-2 showed more potent inhibition of tumor growth and survived much longer than did mice treated with AdCD/5-FC, AdIL-2, adenovirus expressing beta-galactosidase/5-FC or phosphate-buffered saline. The tumor mass showed obvious necrosis and inflammatory cell infiltration, and more CD4+ and CD8+ T cells infiltrating the tumor after combined therapy. The splenic natural killer and cytotoxic T lymphocyte activities increased significantly in the mice after combined therapy with AdCD/5-FC/AdIL-2. Our results demonstrate that therapy combining a suicide gene and IL-2 gene can inhibit the growth of established tumors in mice significantly and induce antitumor immunity of the host efficiently.  相似文献   

3.
Vaccination with tumor cells genetically engineered to produce interleukin (IL)-2 is an attractive strategy to enhance antitumor immune responses. The improved antitumor immunity upon vaccination with IL-2 gene-modified tumor cells may be due to the prolonged presence of the cytokine at the vaccination site. Because liposomes have been used for sustained delivery of a variety of agents, we compared the protective effect of vaccines consisting of IL-2 gene-modified B16 melanoma cells to that of vaccines composed of IL-2 liposomes and irradiated melanoma cells. The results indicate that both approaches equally protect against a lethal challenge with B16 melanoma cells. More than 20% of the protected animals developed vitiligo at the vaccination and/or tumor challenge site.  相似文献   

4.
Down-regulation of oncogene expression by antisense-based gene therapy has been extensively studied, and in some cases, therapeutic effects have been demonstrated. We have previously shown that down-regulation of HPV16 E6 and E7 gene expression inhibited HPV DNA-positive C3 mouse tumor growth. Although not all of the tumor cells were transfected by pU6E7AS plasmid, complete tumor regression was achieved if the tumor size was small at the start of therapy in a syngeneic host. This suggests that some other antitumor mechanisms may be involved in addition to the direct down-regulation of HPV16 E7 oncogene expression by the antisense effect of E7AS. In the current study, we demonstrated that E7AS induces tumor cell apoptosis. More importantly, a strong antitumor immune response was elicited in the pU6E7AS-treated and tumor-regressed mice. There was no tumor growth after rechallenging the tumor-regressed mice with 1 million C3 cells. This E7AS-induced antitumor immune response was augmented by co-delivery of mIL-12 cytokine gene. The combination therapy strategy resulted in complete regression of 26 of 28 (93%) tumors. Only 12 of 31 (38%) tumors from the group treated with pU6E7AS alone and 14 of 28 (50%) tumors from the group treated with pCMVmIL-12 alone had completely regressed. Complete regression was also demonstrated in tumors located 1 cm from the treated tumors, which indicates that a systemic antitumor effect was induced by E7AS and mIL-12. Immunohistochemistry demonstrated that a significant amount of CD4+ and CD8+ cells infiltrated into tumors treated with pU6E7AS, pCMVmIL-12 and pU6E7AS+pCMVmIL-12. These data indicate that host immunity is an important factor for antisense-based gene therapy approach which can be further enhanced by combination with cytokine gene therapy.  相似文献   

5.
Two aspects of cytokine therapy of intracerebral tumors are considered in this study: modulation of tumor growth in vivo and central nervous system toxicity. Coimplantation of RG-2 glioma cells and retroviral vector producer cell lines was performed to provide a local source of interleukin-2 (IL-2) or IFN-gamma within the tumor and coinitiate an antitumor immune response. We demonstrated that local intratumoral production of IL-2 and IFN-gamma generates a cell-mediated antitumor response in vivo. This response was manifest as a diffuse infiltration of monocytes/macrophages, CD4+ and CD8+ T cells, and activation of microglial OX42+ cells in intracerebral RG2 tumors. The cell-mediated antitumor immune response resulted in the early suppression of intracranial and subcutaneous tumor growth, but the effect was not sustained and there were no tumor regressions. The absence of increased survival of animals with intracranial tumors is explained in part by the severe central nervous system toxicity caused by local production of IL-2 and IFN-gamma. Central nervous system toxicity induced blood-brain barrier disruption, vasogenic brain edema, and dislocation of the brain midline structures, as observed by dynamic magnetic resonance imaging and direct measurements of tissue water content. The clinical application of IL-2 and IFN-gamma gene transfer therapy for intracerebral tumors must consider the potential for severe vasogenic brain edema associated with intracerebral production of these cytokines.  相似文献   

6.
Intratumoral inoculation of replication-competent, attenuated herpes simplex virus (HSV) mutants inhibits tumor growth by direct cytotoxic viral replication and induction of a tumor-specific immune response. To boost the antitumor response, we describe a defective HSV vector encoding IL-12 as an adjuvant to in situ vaccination by the replication-competent HSV helper virus. The defective HSV vector system consists of defective particles containing tandem repeats of the cytokine genes (p40 and p35) in combination with a HSV helper virus. Heterodimeric IL-12 was expressed and secreted after IL-12 defective vector infection of tumor cells. In a syngeneic, bilateral established tumor model with CT26 murine colon carcinoma, unilateral intratumoral inoculation with an IL-12 defective/replication-competent HSV vector combination significantly reduced tumor growth of the inoculated and noninoculated contralateral tumors. This antitumor effect was significantly greater than with a lacZ-defective/replication-competent HSV vector combination, which itself was significantly greater than the mock inoculation. Efficacy is associated with enhancement of tumor-specific CTL activity, including specificity against the CT26 immunodominant MHC class I restricted Ag AH1, and IFN-gamma production. There was no significant tumor growth inhibition after intratumoral inoculation of s.c. CT26 tumors in athymic mice. We conclude that this defective HSV vector system is an effective method for cytokine gene delivery to tumors in situ and IL-12 expression in tumors synergizes the antitumor activity mediated by the replication-competent HSV helper virus.  相似文献   

7.
Stable transfection of tumor cells with IFN-alpha genes has been shown to result in abrogation of tumor establishment and induction of antitumor immunity. However, strategies suitable for the clinical application of IFN-alpha gene therapy for cancer have not been reported. In this study, we investigated two gene delivery systems capable of mediating the local paracrine production of high levels of biologically active IFN-alpha in murine tumor models: retroviral transduction of fibroblasts and particle-mediated transfection of tumor cells. In spite of the antiproliferative effects of IFN-alpha, it was possible to obtain stable retroviral producer cell lines and transduce a variety of murine tumor cells including syngeneic fibroblasts to stably secrete 2000-5000 U (40-100 ng) murine IFN-alpha/10(6) cells/24 h. IFN-alpha transduction of tumor cells abrogated tumorigenicity in establishment models and induced antitumor immunity in several murine tumor model systems. Importantly, IFN-alpha gene delivery using retrovirally transduced syngeneic fibroblasts was capable of suppressing the establishment of the poorly immunogenic TS/A mouse mammary adenocarcinoma and induced antitumor immunity. Particle mediated transient transfection of tumor cells using the gene gun led to the production of up to 20,000 U IFN-alpha/10(6) cells during the first 24 h and proved to be equally effective in suppressing establishment of TS/A adenocarcinoma and inducing antitumor immunity. These results suggest that retroviral transduction of autologous fibroblasts can serve as an effective gene delivery method for IFN-alpha gene therapy of cancer. Particle-mediated transfection of freshly isolated tumor cells may represent a clinically attractive alternative approach for nonviral gene delivery. Both strategies circumvent the difficulties in routinely establishing primary tumor cell lines from the vast majority of human cancers.  相似文献   

8.
Here we provide proof that the injection of tumor cells engineered to secrete interleukin 2 (IL-2)-IgG chimeric proteins locally induces potent antitumor responses, which are more effective than tumor transfection with IL-2 alone. Murine plasmacytoma cells (J558L) were stably transfected with DNA coding for a human IL-2-IgG1 or a murine IL-2-IgG2b fusion protein and were injected s.c. into syngeneic BALB/c mice. Evaluation of tumor growth and rejection patterns showed that IL-2-IgG secretion by transfected J558L tumor cells induced their rejection in all animals tested, similar to the rejection of J558L cells engineered to secrete IL-2 alone, whereas treatment with parental cells was lethal. However, mice treated with IL-2-IgG-secreting J558L cells (human IL-2-IgG1 and murine IL-2-IgG2b) exhibited a significantly stronger tumor immunity against a later challenge with parental J558L cells than mice treated with IL-2-secreting tumor cells.  相似文献   

9.
A major goal of tumor immunotherapy is the induction of tumor-specific T cell responses that are effective in eradicating disseminated tumor, as well as mounting a persistent tumor-protective immunity. We demonstrate here that a genetically engineered fusion protein consisting of human/mouse chimeric anti-ganglioside GD2 antibody and human interleukin-2 is able to induce eradication of established B78-D14 melanoma metastases in immunocompetent syngeneic C57BL/6J mice. This therapeutic effect is mediated by host immune cells, particularly CD8+ T cells and is associated with the induction of a long-lived immunity preventing tumor growth in the majority of animals when challenged up to four months later with B78-D14 cells. This effect was tumor-specific, since no cross-protection against syngeneic, ganglioside GD2+ EL-4 thymoma cells was observed. Furthermore, this tumor-specific protection can be transmitted horizontally to naive, syngeneic SCID mice by passive transfer of CD8+ T lymphocytes derived from immune animals. These results suggest that antibody-targeted delivery of cytokines provides a means to elicit effective immune responses against established tumors in the immunotherapy of neoplastic disease.  相似文献   

10.
A cancer treatment is described in which i.m. injection of plasmid DNA (pDNA) encoding murine interferon alpha (mIFN-alpha) leads to potent antitumor effects on primary and metastatic tumors in mice. Mice bearing s.c. B16F10 melanoma, Cloudman melanoma, or glioma 261 tumors were injected i.m. with mIFN-alpha pDNA. In all three tumor models, a significant reduction in tumor volume and enhancement of survival was found after IFN pDNA therapy. The mIFN-alpha pDNA could be injected as infrequently as once every other week and still produce a significant antitumor effect, and, in a metastatic tumor model, the therapy markedly reduced the number of lung tumor metastases. Depletion of immune cell subsets indicated that CD8(+) T cells were required for the antitumor response. These studies demonstrate that primary and metastatic tumors can be treated systemically by i.m. injection of a plasmid encoding a cytokine gene.  相似文献   

11.
The necessity for prolonged tissue culture manipulations limits the clinical application of many form of gene therapy in patients with malignancies. We hypothesized that granulocyte-macrophage colony-stimulating factor (GM-CSF) cDNA in a plasmid expression vector could be effectively introduced into resting tumor cells, without the need for tissue culture propagation prior to or following transfection, and that efficient expression of transgenic GM-CSF by the transfected tumor cells would confer an effective immune response against tumors. GM-CSF cDNA in expression vectors was coated onto gold particles and accelerated with a gene gun device into mouse and human tumor cells. Human tumor tissue transfected within 4 hr of surgery produced significant levels of transgenic human GM-CSF protein in vitro. Human GM-CSF was readily detectable in serum and at the injection site following subcutaneous implantation of these transfected tumor cells into nude mice. Transfected and irradiated murine B16 melanoma cells produced > or = 100 ng/ml murine GM-CSF/10(6) cells per 24 hr in vitro for at least 10 days. The antitumor efficacy of this nonviral approach was tested using irradiated B16 tumor cells that were transfected with mGM-CSF cDNA and injected into mice as tumor "vaccine". Subsequent challenge of these mice with nonirradiated, nontransfected B16 tumor cells showed that 58% of the animals wer protected from the tumor by the prior vaccine treatment. In contrast, only 2% of control animals were protected by prior treatment with irradiated B16 cells transfected with the vector containing the luciferase gene. These results suggest that particle-mediated transfection of fresh tumor explants with cytokine cDNA is an effective and clinically attractive approach for cancer therapy.  相似文献   

12.
Development of an effective immunotherapeutic approach for treatment of CNS tumors must take into account the unique anatomic and immunologic features of the brain. We explored the antitumor immune response in the brain elicited by nonreplicating melanoma cells genetically engineered to produce either granulocyte-macrophage colony-stimulating factor (GM-CSF) or interleukin-2 (IL-2) in a paracrine fashion. Using a new model of intracranial melanoma in C57BL/6 mice, the cytokine-producing cells were given either as a subcutaneous vaccine to induce systemic antitumor immunity or as a direct injection into the brain as local immunotherapy. We found that GM-CSF-transduced cells, as a subcutaneous vaccine but not as an intracranial injection, afforded some protection from intracranial challenge with the wild-type tumor. In contrast, direct intracranial injection of tumor cells secreting IL-2 was protective whereas flank vaccination with IL-2 transductants was not. Combination therapy with both the subcutaneous GM-CSF-transductants as a vaccine and local administration of IL-2-transductants in the brain achieved a synergistic response. These findings provide a basis for the application of paracrine cytokine delivery to brain cancer therapy both as a systemic vaccine and via local administration. The demonstration of synergy between paracrine cytokine therapies holds promise as a novel therapy for brain tumors.  相似文献   

13.
In many different murine models, the immunogenicity of tumor cells can be increased by transduction with a range of immunostimulatory genes, inducing an immune response that causes regression of pre-existing unmodified tumor cells. To investigate the relevance of these animal models to pediatric malignancy, we used autologous unirradiated tumor cells transduced with an adenovirus-IL-2 to immunize 10 children with advanced neuroblastoma. In a dose-escalation study, we found that this tumor immunogen induced a moderate local inflammatory response consisting predominantly of CD4(+) T lymphocytes, and a systemic response, with a rise in circulating CD25(+) and DR+ CD3(+) T cells. Patients also made a specific antitumor response, manifest by an IgG antitumor antibody and increased cytotoxic T-cell killing of autologous tumor cells. Clinically, five patients had tumor responses after the tumor immunogen alone (one complete tumor response, one partial response, and three with stable disease). Four of these five patients were shown to have coexisting antitumor cytotoxic activity, as opposed to only one of the patients with nonresponsive disease. These results show a promising correlation between preclinical observations and clinical outcome in this disease, and support further exploration of the approach for malignant diseases of children.  相似文献   

14.
We have studied the ability of adenoviral (Ad) vectors expressing the cytokines IL-2 or IL-12 to mediate regression of established tumors in a mouse model of mammary adenocarcinoma. Previous results indicated that intratumoral injection of vectors expressing IL-2 (AdCAIL-2), or IL-12 (AdmIL-12.1) induced complete tumor regression in approximately 30-40% of treated animals. In the current studies, we investigated the mechanism of tumor killing in responding animals and the efficacy of AdIL-2 and AdIL-12 vector administration in combination compared with the use of either vector alone. Animals bearing subcutaneous mammary tumors were injected intratumorally with Ad vectors expressing IL-2 or IL-12 or were coinjected with both vectors. Animals receiving the combination treatment responded substantially better than animals which had received either vector alone, with 65% of animals treated with both vectors undergoing complete tumor regression. In all three treatment regimens, tumor regression was associated with the presence of specific antitumor antigen cytotoxic T-lymphocytes (CTLs), which secreted elevated levels of IFN-gamma. Consistent with circulating CTLs being involved in regression, when animals bearing bilateral tumors were inoculated in a single tumor with IL-2 or IL-12 expressing vectors, both tumors regressed in many cases. Again, treatment with both AdCAIL-2 and AdmIL-12.1 was most effective, with 63% of animals undergoing complete regression of both treated and untreated tumors, compared to 18 or 22% of animals injected with either AdCAIL-2 or AdmIL-12.1 alone. These data indicate that the combination of IL-2 and IL-12 is a more effective inducer of antitumor immune responses than either one alone, and that the resulting antitumor responses are effective in mediating the regression of distal untreated tumors, a property which may aid in the treatment of metastatic disease.  相似文献   

15.
BACKGROUND: The adoptive transfer of interleukin-2 (IL-2)-cultured tumor infiltrating lymphocytes (TIL) can cause tumor regression in patients with metastatic melanoma. METHODS: Thirty-eight patients with metastatic melanoma receiving high dose IL-2 and TIL were studied for the ability of autologous 111In-labeled TIL to localize to metastatic tumor deposits by gamma camera imaging and biopsy. Single bolus cyclophosphamide was administered 24-36 hours before TIL infusion in 27 treatment courses. RESULTS: Tumor localization by 111In-labeled TIL was seen by gamma camera imaging in 26 (68.4%) treatment courses. In a univariate analysis of factors influencing TIL traffic, cyclophosphamide administration was significantly associated with the ability to localize tumor by radionuclide imaging (P2 = 0.026). Twenty-one of 26 (80.8%) treatment courses given with cyclophosphamide demonstrated tumor localization, compared with only 5 of 12 (41.7%) treatment courses without cyclophosphamide. In addition, patients whose 111In-labeled TIL imaged their tumor received significantly more TIL than did those that did not (P2 = 0.0052). Biopsies revealed a greater accumulation of 111In in cutaneous tumors than in normal skin biopsy specimens (0.0021 and 0.0004% injectate/gram of tissue, respectively; P2 = < 0.001). The median tumor-to-normal-skin ratio of simultaneous biopsies was 5.0. Finally, 10 of 26 (38.5%) patients who had tumor localization by scan had a clinical response, whereas no responses were noted in 12 patients whose tumors were not imaged (P2 = 0.022). CONCLUSIONS. Localization in tumor may be important in the mechanism of TIL antitumor activity because no clinical responses were seen in patients who did not have their tumors imaged with 111In-TIL. Cyclophosphamide administration before TIL and IL-2 therapy and the administration of large numbers of TIL appear to improve the frequency of TIL localization to tumor.  相似文献   

16.
Interleukin-2 (IL-2) gene therapy alone and in combination with the herpes thymidine kinase gene (tk) was used to evaluate immunological responses and antitumor effects in head and neck cancer. Established floor of mouth squamous cell carcinomas in C3H/HeJ mice were directly injected with recombinant adenoviral vectors carrying both therapeutic and control genes. One week after adenoviral gene transfer, only the animals treated with combination IL-2+tk or tk alone demonstrated significant tumor regression. Residual tumors were harvested for microscopic evaluation and immunohistochemistry staining, which revealed a predominance of CD8+ lymphocytes in the tumor beds of the animals treated with IL-2. To evaluate the systemic immune effects of IL-2, animals treated with single or combination gene therapy received a second site challenge with parental tumor cells or a heterologous but syngeneic sarcoma cell line. Mice treated with combination IL-2 and tk demonstrated a protective systemic immunity specific to the parental tumor cell line, whereas no systemic immune response was evident in mice receiving IL-2 alone. In a separate experiment, a range of concentrations of the adenovirus IL-2 vector were used to treat established tumors. Even with the maximal single-dose adenovirus concentration, IL-2 alone was ineffective as a single therapy. These results support the use of adenovirus-mediated gene transfer of IL-2 as an effective immunotherapy when used adjuvantly with the tk "suicide gene".  相似文献   

17.
Tumor cells genetically modified with certain cytokine genes gain immunogenic properties that allow the development of systemic anti-tumor immunity. Whether different cytokines may influence infiltration of transduced tumors by dendritic cells (DC) has not been investigated. Therefore, we analyzed the C26 murine colon carcinoma genetically modified to release interleukin (IL)-2, IL-4, IL-12, granulocyte colony-stimulating-factor (CSF) or granulocyte-macrophage (GM)-CSF for immunostaining with the monoclonal antibody NDLC145 recognizing the DEC205 determinant which, on tumor sections, is virtually restricted to DC. Infiltrating leukocytes were also characterized for expression of co-stimulatory molecules like CD54, CD86 and major histocompatibility complex class II. The intratumoral DC content was dependent on the type of transduced cytokines with C26/IL-4 being the most abundant in DEC205+ cells. The effect of IL-4 in recruiting DC did not depend on the type of tumor since it was confirmed in the TSA mammary carcinoma. In comparison with C26/GM-CSF, C26/IL-4 had more B7.2+ cells but less Ia+ cells. Furthermore, the hypertrophic skin overlaying tumors producing GM-CSF showed numerous Langerhans cells stained by NDLC145 and the draining lymph nodes showed abundance and paucity of DC in C26/GM-CSF and C26/IL-4, respectively. When injected into the ear pinna, C26/GM-CSF stimulated, whereas C26/IL-4 inhibited DC-mediated priming of delayed-type hypersensitivity reaction by 2,4-dinitro-1-fluorobenzene. These findings prove that transduced cytokines differently influence DC recruitment at the tumor site and DC function in nearby tissues. Along with the other leukocytes and their secondary produced cytokines, DC create an environment in which T cells can be differently modulated. Such a phenomenon may have implications on genetic modification of tumor cells to be used as cancer vaccine.  相似文献   

18.
Tumor immunology     
Malignant tumors express antigens that may stimulate and serve as targets for antitumor immunity. Virally induced tumors usually contain integrated proviral genomes in theircellulargenomes and often express viral genome-encoded proteins that may stimulate specific host immune responses. Antigens unique to individual tumors that stimulate specific rejection of transplanted tumors have been demonstrated only in experimental animals. Other tumor antigens that potentially can stimulate immune responses are shared by different tumors. These include products of mutated or rearranged oncogenes or tumor-suppressor genes. Tumors may also overexpress tissue differentiation antigens or embryonic antigens, which also have the potential to be recognized by the immune system. The recent identification of tumor antigens recognized by cytotoxic T cells opens up new possibilities for constructing chemically defined antigens for specific immunotherapy. Treatment of malignant tumors in humans by immunologic approaches, although theoretically attractive, has not yet succeeded on a large scale. Important progress in immunotherapy of cancer is emerging with several different treatment modalities.  相似文献   

19.
In a cancer gene therapy model recombinant adenoviruses expressing the herpes simplex virus thymidine kinase (HSVtk) gene were injected into tumors in situ, either alone or in combination with adenoviruses (Avs) engineered to express IL-2, IL-6 or the costimulatory molecule B7-1. HSVtk phosphorylates the prodrug ganciclovir, thus converting it into an antimetabolite which kills not only HSVtk expressing cells, but also by the 'bystander effect', neighboring untransduced tumor cells. The tumors regressed in 80% of mice upon AvTK/ganciclovir treatment: combinations with AvIL-2, AvIL-6, or AvB7-1 did not improve these results. Cured mice were protected from further challenge with wild-type tumor but not from challenges with an unrelated syngeneic tumor cell line. Since cytotoxic T lymphocyte responses in this tumor model were weak, we analyzed cytokine secretion from spleen cells of treated animals. The best correlate of antitumor immunity in this model was enhanced secretion of GM-CSF, while secretion of IL-2, IL-6 and IFN gamma was also frequently increased but not as consistently. The enhanced IFN gamma secretion associated with unchanged IL-4 secretion suggests that AvTK treatment results in a predominantly Th1-mediated antitumor immune response.  相似文献   

20.
The identification of tumor-associated Ags recognized by CD8+ CTL and prevention of tumor outgrowth by adoptive transfer of these CTL demonstrates that CD8+ T cells play a major role in antitumor immunity. We have generated B16.F10 melanoma cells that express the glycoprotein epitope amino acid 33-41 (GP33) of the lymphocytic choriomeningitis virus (LCMV) to examine antitumor CD8+ T cell response in C57BL/6 mice immune to LCMV and in mice transgenic for the LCMV GP33-specific P14 TCR (P14 TCR mice). We find that B16.F10GP33 tumor cells grew in syngeneic C57BL/6 mice without inducing T cell tolerance. LCMV infection or adoptive transfer of LCMV-specific effector T cells delayed but did not prevent growth of preestablished tumors in these mice. However, B16.F10GP33 tumor cells were rejected in mice immune to LCMV and in mice treated with LCMV-specific effector T cells on the same day as the tumor. Surprisingly, B16.F10GP33 tumor cells grew in P14 TCR transgenic mice despite an abundance of tumor-associated Ag-specific CD8+ T cells. In these mice, freshly isolated tumor-infiltrating lymphocytes exhibited an activated phenotype and displayed high GP33-specific cytolytic activity when assessed ex vivo. Thus, B16.F10GP33 melanoma cells are able to initiate, but not to sustain, a GP33-specific CTL response sufficient to clear the tumor enduringly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号