首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
An interpolymer anionic composite membrane for reverse osmosis was prepared from poly(vinyl alcohol) and poly(styrene sulfonic acid). The effects of composition of a casting solution, heat-curing periods, and casting thickness on the reverse osmosis performance of resulted membranes have been examined. A mixture of water and ethyl alcohol (12/7, wt %) was found to be a proper solvent for casting an interpolymer membrane on the supporter. The composite membrane was formed by casting the polymer solution in ultrathin film on a microporous polypropylene supporter, evaporating the solvent, and heat-curing at 120°C for a proper period. the optimum composition of a casting solution was as follows: wt % of poly(vinyl alcohol)/poly(styrene sulfonic acid)/solvent was 3/2/95. The membrane heat-cured at 120°C for 2 h has a good performance for reverse osmosis, viz., water flux of 9.1–28.4 L/m2.h at salt rejection level of 88.1–93.4% under applied pressure of 80 kg/cm2 with 0.5% NaCl aqueous solution. The formation mechanism of a water-insoluble membrane was discussed.  相似文献   

2.
A series of novel composite methanol‐blocking polymer electrolyte membranes based on sulfonated polyimide (SPI) and aminopropyltriethoxysilane (APTES) doping with sulfonated mesoporous silica (S‐mSiO2) were prepared by the casting procedure. The microstructure and properties of the resulting hybrid membranes were extensively characterized. The crosslinking networks of amino silica phase together with sulfonated mesoporous silica improved the thermal stability of the hybrid membranes to a certain extent in the second decomposition temperature (250–400°C). The composite membranes doping with sulfonated mesoporous silica (SPI/APTES/S‐mSiO2) displayed superior comprehensive performance to the SPI and SPI/APTES membranes, in which the homogeneously embedded S‐mSiO2 provided new pathways for proton conduction, rendered more tortuous pathways as well as greater resistance for methanol crossover. The hybrid membrane with 3 wt % S‐mSiO2 into SPI/APTES‐4 (SPI/A‐4) exhibited the methanol permeability of 4.68 × 10?6 cm2 s?1at 25°C and proton conductivity of 0.184 S cm?1 at 80°C and 100%RH, while SPI/A‐4 membrane had the methanol permeability of 5.16 × 10?6 cm2 s?1 at 25°C and proton conductivity of 0.172 S cm?1 at 80°C and 100%RH and Nafion 117 exhibited the values of 8.80 × 10?6 cm2 s?1 and 0.176 S cm?1 in the same test conditions, respectively. The hybrid membranes were stable up to about 80°C and demonstrated a higher ratio of proton conductivity to methanol permeability than that of Nafion117. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

3.
In this study, crosslinked polymer electrolyte membranes for polymer electrolyte membrane fuel cell (PEMFC) applications are prepared using electron beam irradiation with a mixture of sulfonated poly(ether ether ketone) (SPEEK), poly(vinylidene fluoride) (PVDF), and triallyl isocyanurate (TAIC) at a dose of 300 kGy. The gel‐fraction of the irradiated SPEEK/PVDF/TAIC (95/4.5/0.5) membrane is 87% while the unirradiated membrane completely dissolves in DMAc solvent. In addition, the water uptake of the irradiated membrane is 221% at 70 °C while that of the unirradiated membrane completely dissolves in water at above 70 °C. The ion exchange capacity and proton conductivity of the crosslinked membrane are 1.57 meq g−1, and 4.0 × 10−2 S cm−1 (at 80 °C and RH 90%), respectively. Furthermore, a morphology study of the membranes is conducted using differential scanning calorimetry and X‐ray diffractometry. The cell performance study with the crosslinked membrane demonstrates that the maximum power density is 518 mW cm−2 at 1036 mA cm−2 and the maximum current density at applied voltage of 0.4 V is 1190 mA cm−2.  相似文献   

4.
A series of acid–base polyimides with sulfonic acid groups in the side chains have been prepared, based on a new synthesized sulfonated diamine monomer containing pyridine functional group. The effect of the introduction of pyridine groups into copolymer backbone on the properties of membrane were evaluated through the investigation of membrane parameters. The copolymers produced flexible, tough, and transparent membranes by solvent casting method. All the prepared membranes displayed high thermal stability, great oxidative stability and good mechanical properties. They exhibited appropriate water uptake (15.8–30.2 wt % at 80°C) and remarkable dimensional stability (2.5–6.9% at 80°C). The proton conductivity of SPI‐80 was 1.01 × 10?2 S cm?1 at room temperature. Moreover, the methanol permeability of SPI‐80 membrane was 1.22 × 10?7 cm2 s?1, which was lower than 23.8 × 10?7 cm2 s?1 of Nafion 117. Therefore, these acid‐base polyimides materials have a promising prospect for direct methanol fuel cell applications. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42238.  相似文献   

5.
Composite anion exchange membranes (AEM) based on quaternized poly (phenylene) oxide and polysulfone blend (QPPO/PSF) were successfully fabricated and characterized for methanol alkaline fuel cell application. To make a composite AEM, increasing graphene oxide (GO) wt.% ratios was introduced in the polymer blend. The membrane properties were enhanced by the addition of GO in comparison to the bare QPPO/PSF blend. The addition of GO resulted to a higher ion exchange capacity (IEC) of 3.21 mmol.g?1 and an ion conductivity increase of up to 63.67 mS.cm?1 at 80 °C. The QPPO/PSF/2%GO composite membrane reached a peak power density of 112 mW.cm?2, which is about five (5) times more than the parent QPPO membrane at room temperature. The above results indicate that QPPO/PSF/GO is a good candidate as an anion exchange membrane for alkaline fuel cell application.  相似文献   

6.
A crosslinked epoxy [4,4′‐diglycidyl‐(3,3′,5,5′‐tetramethylbiphenyl) epoxy resin (TMBP)], cured by phenol novolac (PN), was introduced into a sulfonated poly(ether ether ketone) (SPEEK) membrane (ion‐exchange capacity = 2.0 mequiv/g) with a casting‐solution, evaporation, and heating crosslinking method to improve the mechanical properties, dimensional stability, water retention, and methanol resistance. By Fourier transform infrared analysis, the interactions between the sulfonic acid groups and hydroxyl groups in the blend membranes were confirmed. The microstructure and morphology of the blend membranes were investigated with atomic force microscopy. As expected, the blend membranes showed excellent mechanical properties, good thermal properties (thermal stability above 200°C), lower swelling ratios (1.4% at 25°C and 7.0% at 80°C), higher water retention (water diffusion coefficient = 9.8 × 10?6 cm2/s), and a lower methanol permeability coefficient (3.6 × 10?8 cm2/s) than the pristine SPEEK membrane. Although the proton conductivity of the blend membranes decreased, a higher selectivity (ratio of the proton conductivity to the methanol permeability) was obtained than that of the pristine SPEEK membrane. The results showed that the SPEEK/TMBP/PN blend membranes could have potential use as proton‐exchange membranes in direct methanol fuel cells. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

7.
Enantioselective membrane was prepared using ethyl cellulose (EC) as membrane material. The flux and permselective properties of membrane using aqueous solution of (R,S)‐2‐phenyl‐1‐propanol as feed solution was studied. The employed membrane process was a pressure driven process. All kinds of important conditions including preparation and operation of membranes were investigated in this experimentation. When the membrane was prepared with 18 wt % EC, 20 wt % N,N‐dimethylformamide in casting solution, 13 min evaporation time and 0°C temperature of water bath for the gelation of the membrane, and the operating pressure and feed solution of (R,S)‐2‐phenyl‐1‐propanol were 0.2 MPa and 1.5 mg/mL, respectively, over 90% of enantiomeric excess (e.e.) and 44.2 (mg/m2 h) of flux were obtained. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

8.
Membranes made from solutions of 18 wt.% cellulose acetate, 58 wt.% 1,4-dioxane and 24 wt.% water reject 98.5% of the endotoxins from aqueous solutions containing ppm levels of the contaminant in a single pass at operating pressures of 3.52 kg/cm2 ( ~ 50 psi). These membranes exhibited an average flux of 30.7 × 10-2 cc/cm2-min (108.5 gal/ft2-day) under these conditions. The effects of the following variables at room temperature are examined: casting solution composition, temperature and composition of quenching medium, membrane thickness and percolating time.  相似文献   

9.
Solid oxide fuel cells (SOFCs) based on the proton conducting BaZr0.1Ce0.7Y0.2O3–δ (BZCY) electrolyte were prepared and tested in 500–700 °C using humidified H2 as fuel (100 cm3 min–1 with 3% H2O) and dry O2 (50 cm3 min–1) as oxidant. Thin NiO‐BZCY anode functional layers (AFL) with 0, 5, 10 and 15 wt.% carbon pore former were inserted between the NiO‐BZCY anode and BZCY electrolyte to enhance the cell performance. The anode/AFL/BZCY half cells were prepared by tape casting and co‐sintering (1,300 °C/8 h), while the Sm0.5Sr0.5CoO3–δ (SSC) cathodes were prepared by thermal spray deposition. Well adhered planar SOFCs were obtained and the test results indicated that the SOFC with an AFL containing 10 wt.% pore former content showed the best performance: area specific resistance as low as 0.39 Ω cm2 and peak power density as high as 0.863 W cm–2 were obtained at 700 °C. High open circuit voltages ranging from 1.00 to 1.12 V in 700–500 °C also indicated negligible leakage of fuel gas through the electrolyte.  相似文献   

10.
Improved membranes from cellulose acetate–acetone–formamide casting solutions have been prepared for low-pressure reverse osmosis applications. The film-casting details for one such type of membranes (Batch 400) are as follows. Casting solution composition: cellulose acetate (E-398-3), 17 wt-%, acetone, 56 wt-%, formamide, 27 wt-%; temperature of casting solution, 24°C; temperature of casting atmosphere, 24°C; casting atmosphere, ambient air in contact with 30 wt-% acetone in aqueous solution; solvent evaporation period, 30 sec; gelation medium, ice-cold water. Using aqueous feed solutions containing 3500 ppm of NaCl, the product rates obtained with the above membranes at 95, 90, and 60% levels of solute separation were 15.9, 22.1, and 58.7 gallons/(day ft2), respectively, at 250 psig under feed flow conditions corresponding to a mass transfer coefficient of 45 × 10?4 cm/sec on the high-pressure side of the membrane. The effects of casting solution composition, presence of acetone in the casting atmosphere, evaporation period, evaporation rate constant, and the remoteness of casting solution composition from the corresponding phase boundary composition on membrane performance and shrinkage temperature profile were found to be similar to those reported earlier for membranes obtained from cellulose acetate–acetone–aqueous magnesium perchlorate casting solutions. The results illustrate the practical utility of the approach based on the solution structure–evaporation rate concept for creating more productive reverse osmosis membranes.  相似文献   

11.
The effects of temperature of casting solution in the range ?10° to 15°C, that of casting atmosphere in the range 10° to 30°C, relative humidity of casting atmosphere in the range 35% to 75%, and solvent evaporation period in the range 0.5 to 3 min were studied on shrinkage temperatures, solute separations, and product rates of Loeb-Sourirajan-type cellulose acetate membranes in reverse osmosis experiments. The composition of casting solution used was as follows: cellulose acetate, 17; acetone, 69.2; magnesium perchlorate, 1.45; and water, 12.35 wt-%. Best performance was obtained with membranes cast under the following conditions: temperature of casting solution, 10°C; temperature of casting atmosphere, 30°C; relative humidity of casting atmosphere, 65%; and solvent evaporation period, 1 min. For a 90% level of solute separation, the productivities of the above type of membranes were 22.9, 61.4, and 64.5 gallons/day-ft2 at 250, 600, and 1500 psig using 3500 ppm NaCl–H2O, 5000 ppm NaCl–H2O, and 28395 ppm NaCl–H2O feed solutions, respectively. In all cases, the feed flow rates corresponded to a mass transfer coefficient of 45 × 10?4 cm/sec on the high-pressure side of the membrane. The general specifications of the above type of membranes are given for the operating pressures of 250, 600, and 1500 psig. The effects of the above casting condition variables on the surface pore structure during film formation are discussed.  相似文献   

12.
The sulfonated polybenzimidazole (sPBI)/sulfonated imidized graphene oxide (SIGO) was evaluated to be a potential candidate for high temperature proton exchange membranes fuel cells (HT-PEMFCs). Multifunctionalized covalently bonded SIGO is incorporated in sPBI matrix to resolve the drawbacks such as low proton conductivity, poor water uptake, and ion-exchange capacity (IEC) of sPBI polymer, synthesized by direct polycondensation in phosphoric acid for the application of proton exchange membranes. Strong hydrogen bonding among multifunctional groups established a neighborhood of interconnected hydrophobic graphene sheets and organic polymer chains. It provides hydrophobic–hydrophilic phase separation and facile proton hopping architecture. The optimized sPBI/SIGO (15 wt %) revealed 2.45 meq g−1 IEC; 5.81 mS cm−1 proton conductivity [120 °C and 10% relative humidity (RH)] and 2.45% bound water content. The maximum power density of the sPBI/SIGO-15 membrane was 0.40 W cm−2 at 160 °C (5% RH) and ambient pressure with stoichiometric feed of H2/air. This recommends that sPBI/SIGO composite membranes are compatible candidate for HT-PEMFCs. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47892.  相似文献   

13.
A series of six composite membranes was prepared with two polymer electrolytes and three inorganic fillers, namely, silica, titania, and zirconia by a solution casting method. Two polymer electrolytes, that is, anion‐exchange membranes, were prepared from polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene (PSEBS) and polysulfone by chloromethylation and quaternization. A preliminary characterization of the ionic conductivity, methanol permeability, and selectivity ratio was done for all of the prepared composite membranes to check their suitability to work in direct methanol alkaline membrane fuel cells (DMAMFCs). The DMAMFC performance was analyzed with an in‐house fabricated single cell unit with a 25‐cm2 area. Maximum performance was achieved for the composite membrane quaternized PSEBS/7.5% TiO2 and was 74.5 mW/cm2 at 60°C. For the comparison purposes, a commercially available anion‐exchange membrane (Anion Membrane International‐7001) was also investigated throughout the study. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
A positive‐working, aqueous‐base‐developable photosensitive polyimide precursor based on poly(amic ester)‐bearing phenolic hydroxyl groups and a diazonaphthoquinone photosensitive compound was developed. The poly(amic ester) was prepared from a direct polymerization of 2,2′‐bis‐(3‐amino‐4‐hydroxyphenyl)hexafluoropropane and bis(n‐butyl)ester of pyromellitic acid in the presence of phenylphosphonic dichloride as an activator. Subsequently, the thermal imidization of the poly(amic ester) precursor at 300°C produced the corresponding polyimide. The inherent viscosity of the precursor polymer was 0.23 dL/g. The cyclized polyimide showed a glass‐transition temperature at 356°C and a 5% weight loss at 474°C in nitrogen. The structures of the precursor polymer and the fully cyclized polymer were characterized by Fourier transform infrared spectroscopy and 1H‐NMR. The photosensitive polyimide precursor containing 25 wt % diazonaphthoquinone photoactive compound showed a sensitivity of 150 mJ/cm2 and a contrast of 1.65 in a 3 μm film with 1.25 wt % tetramethylammonium hydroxide developer. A pattern with a resolution of 10 μm was obtained from this composition. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 352–358, 2002  相似文献   

15.
This study investigated a simple synthesis of a crosslinked poly(vinyl alcohol)/ graphene oxide composite membrane with lower ethanol permeability membrane for passive direct ethanol–proton exchange membrane fuel cells (DE-PEMFCs). The chemical and physical structure, morphologies, ethanol uptake and permeability, ion exchange capacities, water uptake, and proton conductivities were determined and found that transport properties of the membrane were affected by the GO loading. The composite membrane with optimum GO content (15 wt %) exhibited the highest proton conductivity of 9.5 × 10−3 Scm−1 at 30°C, 3.24 × 10−2 Scm−1 at 60°C, respectively and reduced ethanol permeability until 1.75 × 10−7 cm2 s−1. In the passive DE-PEMFC, the power density at 60°C were obtained as 5.84 mW cm−2 higher than those by commercial Nafion 117 is 4.52 mW cm−2. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 46928.  相似文献   

16.
In this article, organic/inorganic membrane was prepared for gas separation by incorporating dodeca‐tungstophosphric acid (PWA) into the base polymer. Flat‐sheet composite membranes were produced via dry‐phase inversion method. In the first stage, the effects of PWA concentration on morphology and performance of polyvinyl alcohol (PVA) membranes were elucidated. For this stage, the preparation of membranes was carried out at constant temperature of 40°C. The porosity of the prepared membrane was slightly increased with addition of PWA. By increasing the PWA concentration up to 6 wt % in the membrane recipe, the permeability of N2, O and air was improved from 50,000 (for no addition of PWA) to around 160,000, 140,000, and 80,000 L m?2 h?1, respectively. For H this was enhanced from 110,000 to 230,000 L m?2 h?1. The ideal selectivity of the membrane was slightly improved for N2/air (from 1 to 1.2). For N2/O2 pair, the initial drop (from 2.5 to 1.5) was followed by a slight increase (1.5–1.9). Moreover, the selectivity was decreased for H2/air (from 2.8 to 1.8) and H2/N2 (from 2.2 to 1.7) by increasing the PWA concentration. The 10 wt % PVA membrane with 6 wt % PWA demonstrated superior performance compared with the other compositions. In summary, the presence of PWA in the casting solution results in lower flux for O2 and higher selectivity for H2/O2 pair. In the second stage, the effects of solvent evaporation temperature (10, 27, 40, and 80°C) on morphology and performance of the membranes were studied. By increasing the temperature, the number and size of voids were increased. The permeation of gases was improved from 100,000 L m?2 h?1 (at 10°C) to 150,000 (O2), 250,000 (air), 380,000 (N2), and 600,000 L m?2 h?1 (H2) by increasing the temperature up to 80°C. This increment resulted in selectivity alteration either increment or diminishment. The selectivity was changed from 1.3 to 3.2 (H2/O2), 0.8–2.5 (N2/O2), 1.2–2.4 (H2/air), 0.6–1.5 (N2/air) and 2.0–1.5 (H2/N2). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

17.
S. Das  K. Dutta  S. Hazra  P. P. Kundu 《Fuel Cells》2015,15(3):505-515
Partially sulfonated poly(vinylidene fluoride) (SPVdF) has been prepared by incorporation of sulfonic acid groups within poly(vinylidene fluoride), using chlorosulfonic acid as the sulfonating agent. The degree of sulfonation (DS) has been varied by modulating the duration of the sulfonation reaction. Blending of SPVdF (having DS = 36.78%) with Nafion at a constituent wt.% ratio of SPVdF:Nafion = 70:30 has resulted in the fabrication of polymer electrolyte membrane with superior properties compared to pristine Nafion‐117 membrane. This particular blend composition exhibited a proton conductivity value of 3.6 × 10−2 S cm−1 (i.e. ∼12.5% increase over Nafion‐117), a methanol permeability value of 6.81 × 10−7 cm2 s−1 at 6M methanol concentration (i.e. ∼99.31% decrease from Nafion‐117) and a corresponding membrane selectivity value of 5.29 × 104 Ss cm−3 (i.e. an increase of approximately two‐orders of magnitude over Nafion‐117) at 20 °C. In addition, this blend composition has also exhibited (a) better heat stability at temperatures as high as 160 °C by virtue of it possessing higher glass transition temperature, (b) higher storage modulus, (c) higher stress relaxation at high angular frequency and (d) superior DMFC performance at high methanol feed concentration in presence of humidified, as well as, non‐humidified air as the catholyte, compared to Nafion‐117 membrane.  相似文献   

18.
Crosslinked polymer electrolyte networks were prepared from poly(ethylene glycol) diglycidyl ether blended with an epoxy resin (diglycidyl ether of bisphenol A) in different ratios and then cured with α,ω‐diamino poly(propylene oxide) in the presence of lithium perchlorate (LiClO4) as a lithium salt. The ionic conductivities of these polymer electrolytes were determined by alternating current (AC) impedance spectroscopy. Propylene carbonate (PC) was used as a plasticizer to form gelled polymer electrolyte networks. The conductivities of the polymer electrolytes containing 46 wt % PC plasticizer were approximately 5 × 10?4 S cm?1 at 25°C and approximately 10?3 S cm?1 at 85°C. These polymer electrolytes were homogeneous and exhibited good mechanical properties. The effects of the polymer composition, plasticizer content, salt concentration, and temperature on the ionic conductivities of the polymer electrolytes were examined. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1264–1270, 2004  相似文献   

19.
Microporous poly(ether sulfone) (PES) supported hybrid polymer–inorganic membranes were prepared by the crosslinking of poly(vinyl alcohol) (PVA), maleic acid (MA), and SiO2 via an aqueous sol–gel route and a solution‐casting method. The membrane performance was tested for the pervaporation separation of ethanol–water mixtures from 20 to 60 °C with a feed ethanol concentration of 96 wt %. The membrane characterization results reveal that different SiO2 loadings affected the crystallinity and roughness of the membranes. The PVA–MA–SiO2 membrane containing 10 wt % SiO2 showed that SiO2 nanoparticles were well dispersed within the polymer matrix; this resulted in significant enhancements in both the flux and selectivity. The membrane achieved a high water permeability of 1202 g·μm·m?2 h?1 kPa?1 and a selectivity of 1027 for the separation of a 96 wt % ethanol‐containing aqueous solution. This enhanced membrane performance might have been due to the dense crosslinking membrane network, increased free volume, and uniform distribution of SiO2 nanoparticles. Both the water and ethanol fluxes increased with the feed water concentration and temperature. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44839.  相似文献   

20.
The separation properties in the dehydration of a water–ethanol mixture and the swelling behavior of interpenetrating polymer network (IPN) pervaporation membranes based on a cellulose or cellulose–hydroxyethyl cellulose (HEC) matrix and poly(acrylamide and/or acrylic acid) were investigated depending on the ionic acrylate groups content (γ) in synthetic polymer chains (0–100 mol %), the HEC content in the matrix (0–50 wt %), and the temperature (25–60°C). The separation factor (α), permeation rate (P), and separation index (αP) significantly improved with increasing γ values only for the separation of concentrated ethanol solutions (~86 wt %). For more dilute solutions of ethanol (~46 wt %), the P and αP values also increased but no considerable increase in α was observed. All types of membranes based on the cellulose matrix were characterized by a drastic decrease in the values of P at [EtOH] ≥90 wt % and, as a result, a decrease in the separation index (kg m?2 h?1) from ~2000 (for 86 wt % EtOH, 50°C) to ~240 (for 95 wt % EtOH, 50°C), which correlates with a decrease in the degree of membrane swelling. The modification of the cellulose matrix by introducing HEC into it makes it possible to increase considerably the membrane swelling in concentrated EtOH solutions and, hence, the αP value to ~760 (95 wt % EtOH, 50°C). All types of IPN membranes exhibit a marked increase in both α and P when the temperature increases from 25 to 60°C. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 80: 1452–1460, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号