首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Water-insoluble papain was prepared by immobilizing papain onto the surface of porous poly(λ-methyl L -glutamate) (PMLG) beads with and without spacer. The mode of the immobilization between papain and porous PMLG beads was covalent fixation. The relative activity and the stability of the immobilized papain was investigated. The retained activity of the papain covalently immobilized by the azide method was found to be excellent toward a small ester substrate, N-benzyl L -arginine ethyl ester (BAEE), compared with that of the peptide binding method. The values of the Michaelis constant Km and the maximum reaction velocity Vm for free and immobilized papain on the PMLG beads were estimated. The apparent Km was larger for immobilized papain than for the free enzyme, while Vm was smaller for the immobilized papain. The thermal stability of the covalently immobilized papain was higher than that of the free papain. The initial enzymatic activity of the covalently immobilized papain remained approximately unchanged with storage time, when the batch enzyme reaction was performed repeatedly, indicating the excellent durability.  相似文献   

2.
Immobilization glucoamylase onto plain and a six‐carbon spacer arm (i.e., hexamethylene diamine, HMDA) attached poly(2‐hydroxyethylmethacrylate‐ethyleneglycol dimethacrylate) [poly(HEMA‐EGDMA] microspheres was studied. The microspheres were prepared by suspension polymerization and the spacer arm was attached covalently by the reaction of carbonyl groups of poly(HEMA‐EGDMA). Glucoamylase was then covalently immobilized either on the plain of microspheres via CNBr activation or on the spacer arm‐attached microspheres via CNBr activation and/or using carbodiimide (CDI) as a coupling agent. Incorporation of the spacer arm resulted an increase in the apparent activity of the immobilized enzyme with respect to enzyme immobilized on the plain of the microspheres. The activity yield of the immobilized glucoamylase on the spacer arm‐attached poly(HEMA‐EGDMA) microspheres was 63% for CDI coupling and 82% for CNBr coupling. This was 44% for the enzyme, which was immobilized on the plain of the unmodified poly(HEMA‐EGDMA) microspheres via CNBr coupling. The Km values for the immobilized glucoamylase preparations (on the spacer arm‐attached microspheres) via CDI coupling 0.9% dextrin (w/v) and CNBr coupling 0.6% dextrin (w/v) were higher than that of the free enzyme 0.2% dextrin (w/v).The temperature profiles were broader for both immobilized preparations than that of the free enzyme. The operational inactivation rate constants (kiop) of immobilized enzymes were found to be 1.42 × 10?5 min?1 for CNBr coupled and 3.23 × 10?5 min?1 for CDI coupled glucoamylase. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2702–2710, 2001  相似文献   

3.
The plant cellulose powder was activated by two different methods using 1,4-butanediol diglycidyl ether(BTDE)and 1,1′-Carbonyldiimidazole(CDI) as the chemical coupling agents.Organophosphorus hydrolase(OPH) from Flavobacterium ATCC 27551 was immobilized on any of activated support through covalent bonding.The optimal conditions of affecting parameters on enzyme immobilization in both methods were found, and it was demonstrated that the highest activity yields of immobilized OPH onto epoxy and CDI treated cellulose were 68.32%and 73.51%, respectively.The surface treatment of cellulose via covalent coupling with BTDE and CDI agents was proved by FTIR analysis.The kinetic constants of the free and immobilized enzymes were determined, and it was showed that both immobilization techniques moderately increased the Kmvalue of the free OPH.The improvements in storage and thermal stability were investigated and depicted that the half-life of immobilized OPH over the surface of epoxy modified cellulose had a better growth compared to the free and immobilized enzymes onto CDI treated support.Also, the pH stability of the immobilized preparations was enhanced relative to the free counterpart and revealed that all enzyme samples would have the same optimum pH value for stability at 9.0.Additionally, the immobilized OPH onto epoxy and CDI activated cellulose retained about 59% and 68% of their initial activity after ten turns of batch operation, respectively.The results demonstrated the high performance of OPH enzyme in immobilized state onto an inexpensive support with the potential of industrial applications.  相似文献   

4.
Microporous poly(2‐hydroxyethyl methacrylate) (pHEMA) membrane was prepared by UV‐initiated photopolymerization. The spacer arm (i.e., hexamethylene diamine) was attached covalently and then invertase was immobilized by the condensation reaction of the amino groups of the spacer arm with carboxyl groups of the enzyme in the presence of carbodiimides. The values of the Michael's constant Km of invertase were significantly larger (ca. 2.5 times) upon immobilization, indicating decreased affinity by the enzyme for its substrate, whereas Vmax was smaller for the immobilized invertase. Immobilization improved the pH stability of the enzyme as well as its temperature stability. Thermal stability was found to increase with immobilization and at 70°C the half times for the activity decay were 12 min for the free enzyme and 41 min for the immobilized enzyme. The immobilized enzyme activity was found to be quite stable in repeated experiments. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 75: 1685–1692, 2000  相似文献   

5.
胺化聚苯乙烯载体柔性固定化木瓜蛋白酶   总被引:9,自引:1,他引:8  
提出酶的“柔性固定化”模型,并以Mannich反应得到担载量为0.4~6.0 mmol NH2•g-1的胺化聚苯乙烯树脂为载体,以双醛淀粉为柔性链,对木瓜蛋白酶进行柔性固定化,酶活回收率可达40%~50%,相当于手臂固定化酶活力回收率的1.8~2.4倍,且柔性固定化酶稳定性较好.该结果说明,酶的“柔性固定化”模型可以改善传统共价结合固定化酶及手臂固定化酶活力回收率不高的缺陷.  相似文献   

6.
BACKGROUND: Most enzymes, including protease, play a key role in biotechnology, but their use is quite limited due to poor recovery, limited reusability and instability. Immobilized enzymes offer advantages over free enzymes. This paper reports a simple method for the preparation of immobilized papain, an endolytic cysteine protease (EC: 3.4.22.2), on carboxyl‐activated silica nanoparticles. RESULTS: The carboxyl‐activated carriers produced reactive carboxyl groups which then react with the free amino groups of enzyme to give peptide bonds (? CO? NH? ). The results showed that the thermal and pH stabilities of the immobilized papain were higher than those of free enzyme. And the apparent Km value of the immobilized papain was 1.26 times higher than that of free enzyme. Moreover, the immobilized papain retained more than 45% of the original activity after ten reuses continuously. CONCLUSION: The results indicated that papain was successfully immobilized on the surface of the activated carriers. The immobilized papain had not only higher activity recovery, but also better stability, reusability and environmental adaptability. Copyright © 2012 Society of Chemical Industry  相似文献   

7.
This article describes the covalent immobilization of penicillin G acylase (PGA) onto glutaraldehyde-activated NH2-PVC membranes. The immobilized enzyme was used for 6-aminopenicillanic acid production from penicillin hydrolysis. Parameters affecting the immobilization process, which affecting the catalytic activity of the immobilized enzyme, such as enzyme concentration, immobilization's time and temperature were investigated. Enzyme concentration and immobilization's time were found of determine effect. Higher activity was obtained through performing enzyme immobilization at room temperature. Both optimum temperature (35°C) and pH (8.0) of immobilized enzyme have not been altered upon immobilization. However, immobilized enzyme acquires stability against changes in the substrate's pH and temperature values especially in the higher temperature region and lower pH region. The residual relative activities after incubation at 60°C were more than 75% compared to 45% for free enzyme and above 50% compared to 20% for free enzyme after incubation at pH 4.5. The apparent kinetic parameters KM and VM were determined. KM of the immobilized PGA (125.8 mM) was higher than that of the free enzyme (5.4 mM), indicating a lower substrate affinity of the immobilized PGA. Operational stability for immobilized PGA was monitored over 21 repeated cycles. The catalytic membranes were retained up to 40% of its initial activity after 10.5 working h. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

8.
Immobilization of β‐galactosidase in poly (acrylonitrile‐co‐methyl methacrylate) poly (AN‐co‐MMA) Nanofibers was studied by electrospinning, and a spacer‐arm i.e., (Polyethyleneimine (PEI)) was covalently attached by the reaction of carbonyl groups of Poly (AN‐co‐MMA) nanofibers. β‐galactosidase was then covalently immobilized through the spacer‐arm of the Poly (AN‐co‐MMA) nanofibers by using glutaraldehyde (GA) as a coupling agent. Nanofibers mode of interaction was proven by FTIR and thermal gravimetric analysis and supported by morphological changes recognized through SEM examination. Factors affecting the modification process such as PEI concentration, reaction time, and reaction temperature have been studied. Its influence on the amount of coupled PEI was consequently correlated to the changes of the catalytic activity and the retained activity of immobilized enzyme, the main parameters judging the success of the immobilization process. Evidences of Poly (AN‐co‐MMA) nanofibers modification were extracted from morphological changes recognized through SEM examination. The maximum activity (Vmax) and michaelis constant (Km) of immobilized enzyme were found to be 8.8 μmole/min mg protein and 236.7 mM, respectively. Stabilities of the immobilized β‐galactosidase were obviously improved. The optimum temperature for β‐galactosidase immobilized on the spacer‐arm attached nanofiber was 5°C higher than that of the free enzyme and was also significantly broader. The immobilized β‐galactosidase had better resistance to temperature inactivation than did the free form. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

9.
Water-insoluble proteases were prepared by immobilizing papain, ficin, and bromelain onto the surface of porous chitosan beads with any length of spacer by covalently fixation. The activity of the immobilized proteases was found to be still high toward small ester substrate, N-benzyl-L -arginine ethyl ester (BAEE), but rather low toward casein, a high-molecular-weight substrate. The relative activity of the immobilized proteases with spacer gave an almost constant value for the substrate hydrolysis within the surface concentration region studied. The values of the Michaelis constant Km and the maximum reaction velocity Vm for free and immobilized proteases on the porous chitosan beads are estimated. The apparent Km values were larger for immobilized proteases than for the free ones, while Vm values were smaller for the immobilized proteases. The pH, thermal, and storage stability of the immobilized proteases were higher than those of the free ones. The initial enzymatic activity of the immobilized protease maintained almost unchanged without any elimination and inactivation of proteases, when the batch enzyme reaction was performed repeatedly, indicating the excellent durability.  相似文献   

10.
Invertase was immobilized onto poly(p‐chloromethylstyrene) (PCMS) beads that were produced by a suspension polymerization with an average size of 186 μm. The beads had a nonporous but reasonably rough surface. Because of this, a reasonably large external surface area (i.e., 14.1 m2/g) could be achieved with the proposed carrier. A two‐step functionalization protocol was followed for the covalent attachment of invertase onto the bead surface. For this purpose, a polymeric ligand that carried amine groups, polyethylenimine (PEI), was covalently attached onto the bead surface by a direct chemical reaction. Next, the free amine groups of PEI were activated by glutaraldehyde. Invertase was covalently attached onto the bead surface via the direct chemical reaction between aldehyde and amine groups. The appropriate enzyme binding conditions and the batch‐reactor performance of the immobilized enzyme system were investigated. Under optimum immobilization conditions, 19 mg of invertase was immobilized onto each gram of beads with 80% retained activity after immobilization. The effects of pH and temperature on the immobilized invertase activity were determined and compared with the free enzyme. The kinetic parameters KM and VM were determined with the Michealis–Menten model. KM of immobilized invertase was 1.75 folds higher than that of the free invertase. The immobilization caused a significant improvement in the thermal stability of invertase, especially in the range of 55–65°C. No significant internal diffusion limitation was detected in the immobilized enzyme system, probably due to the surface morphology of the selected carrier. This result was confirmed by the determination of the activation energies of both free and immobilized invertases. The activity half‐life of the immobilized invertase was approximately 5 times longer than that of the free enzyme. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1268–1279, 2002  相似文献   

11.
Invertase was immobilized onto the dimer acid‐co‐alkyl polyamine after activation with 1,2‐diamine ethane and 1,3‐diamine propane. The effects of pH, temperature, substrate concentration, and storage stability on free and immobilized invertase were investigated. Kinetic parameters were calculated as 18.2 mM for Km and 6.43 × 10?5 mol dm?3 min?1 for Vmax of free enzyme and in the range of 23.8–35.3 mM for Km and 7.97–11.71 × 10?5 mol dm?3 min?1 for Vmax of immobilized enzyme. After storage at 4°C for 1 month, the enzyme activities were 21.0 and 60.0–70.0% of the initial activity for free and immobilized enzyme, respectively. The optimum pH values for free and immobilized enzymes were determined as 4.5. The optimum temperatures for free and immobilized enzymes were 45 and 50°C, respectively. After using immobilized enzyme in 3 days for 43 times, it showed 76–80% of its original activity. As a result of immobilization, thermal and storage stabilities were increased. The aim of this study was to increase the storage stability and reuse number of the immobilized enzyme and also to compare this immobilization method with others with respect to storage stability and reuse number. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 1526–1530, 2004  相似文献   

12.
Carboxymethylcellulose (CMC) beads were prepared by a liquid curing method in the presence of trivalent ferric ions, and epicholorohydrin was covalently attached to the CMC beads. Polyphenol oxidase (PPO) was then covalently immobilized onto CMC beads. The enzyme loading was 603 µg g−1 bead and the retained activity of the immobilized enzyme was found to be 44%. The Km values were 0.65 and 0.87 mM for the free and the immobilized enzyme, and the Vmax values were found to be 1890 and 760 U mg−1 for the free and the immobilized enzyme, respectively. The optimum pH was 6.5 for the free and 7.0 for the immobilized enzyme. The optimum reaction temperature for the free enzyme was 40 °C and for the immobilized enzyme was 45 °C. Immobilization onto CMC hydrogel beads made PPO more stable to heat and storage, implying that the covalent immobilization imparted higher conformational stability to the enzyme. © 2000 Society of Chemical Industry  相似文献   

13.
Glucoamylase was immobilized on acid activated montmorillonite clay via two different procedures namely adsorption and covalent binding. The immobilized enzymes were characterized by XRD, NMR and N2 adsorption measurements and the activity of immobilized glucoamylase for starch hydrolysis was determined in a batch reactor. XRD shows intercalation of enzyme into the clay matrix during both immobilization procedures. Intercalation occurs via the side chains of the amino acid residues, the entire polypeptide backbone being situated at the periphery of the clay matrix. 27Al NMR studies revealed the different nature of interaction of enzyme with the support for both immobilization techniques. N2 adsorption measurements indicated a sharp drop in surface area and pore volume for the covalently bound glucoamylase that suggested severe pore blockage. Activity studies were performed in a batch reactor. The adsorbed and covalently bound glucoamylase retained 49% and 66% activity of the free enzyme respectively. They showed enhanced pH and thermal stabilities. The immobilized enzymes also followed Michaelis–Menten kinetics. K m was greater than the free enzyme that was attributed to an effect of immobilization. The immobilized preparations demonstrated increased reusability as well as storage stability.  相似文献   

14.
Poly(glycidylmethacrylate), p(GMA), brush grafted poly(vinylbenzyl chloride/ethyleneglycol dimethacrylate), p(VBC/EGDMA), beads were prepared by suspension polymerization and the beads were grafted with poly(glycidyl methacrylate), p(GMA), via surface‐initiated atom transfer radical polymerization aiming to construct a material surface with fibrous polymer. The epoxy groups of the fibrous polymer were reacted with hydrazine (HDZ) to create affinity binding site on the support for adsorption of protein. The influence of pH, and initial invertase concentration on the immobilization capacity of the p(VBC/EGDMA‐g‐GMA)‐HDZ beads has been investigated. Maximum invertase immobilization onto hydrazine functionalized beads was found to be 86.7 mg/g at pH 4.0. The experimental equilibrium data obtained invertase adsorption onto p(VBC/EGDMA‐g‐GMA)‐HDZ affinity beads fitted well to the Langmuir isotherm model. It was shown that the relative activity of immobilized invertase was higher than that of the free enzyme over broader pH and temperature ranges. The Km and Vmax values of the immobilized invertase were larger than those of the free enzyme. After inactivation of enzyme, p(VBC/EGDMA‐g‐GMA)‐HDZ beads can be easily regenerated and reloaded with the enzyme for repeated use. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

15.
Alkaline phosphatase from calf intestinal mucous membrane was immobilized on the modified and unmodified Na-sepiolite. The effects of various factors such as concentration of enzyme solution, pH and temperature of immobilization medium, magnetic stirring and various thermodynamic parameters on the immobilization rate of alkaline phosphatase (APh) were evaluated. pH = 10 was optimal for enzyme activity for both the free enzyme and the sepiolite. Sepiolite with bilayer surfactant coverage (SBS) had high ability for immobilization of APh. APh immobilized on SBS showed approximately similar Vmax and Km in comparison with the free enzyme. By immobilization of APh on Na-sepiolite without surfactant (SWS) and sepiolite with monolayer surfactant coverage (SMS), Vmax decreased and Km increased.  相似文献   

16.
A nonspecific chitosan hydrolytic enzyme, cellulase, was immobilized onto magnetic chitosan microspheres, which was prepared in a well spherical shape by the suspension crosslinking technique. The morphology characterization of the microspheres was carried out with scanning electron microscope and the homogeneity of the magnetic materials (Fe3O4) in the microspheres was determined from optical micrograph. Factors affecting the immobilization, and the properties and stabilities of the immobilized enzyme were studied. The optimum concentration of the crosslinker and cellulase solution for the immobilization was 4% (v/v) and 6 mg/mL, respectively. The immobilized enzyme had a broader pH range of high activity and the loss of the activity of immobilized cellulase was lower than that of the free cellulase at high temperatures. This immobilized cellulase has higher apparent Michaelis–Menten constant Km (1.28 mg/mL) than that of free cellulase (0.78 mg/mL), and the maximum apparent initial catalytic rate Vmax of immobilized cellulase (0.39 mg mL?1 h?1) was lower than free enzyme (0.48 mg mL?1 h?1). Storage stability was enhanced after immobilization. The residual activity of the immobilized enzyme was 78% of original after 10 batch hydrolytic cycles, and the morphology of carrier was not changed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1334–1339, 2006  相似文献   

17.
Alkaline phosphatase, ALPase (E.C. 3.1.3.1) was immobilized on Bombyx mori silk fibroin fiber by covalent bond formation. Two different immobilization procedures (i.e. diazo and cyanogen bromide, CNBr, methods) were tried. The immobilization conditions such as pH, enzyme concentration, reaction time, and temperature were examined in detail, and optimum conditions were obtained. The immobilized enzyme activity was characterized with Michaelis constant, Km , and maximum activity, Vm. The optimum pH of the activity of the fixed enzyme tended to shift to the acid side. Thermal stabilities of the enzyme were improved above 50°C. In addition, the immobilized enzyme maintains activity over a long period.  相似文献   

18.
Transketolase (TK) from S. cerevisiae was successfully immobilized on layered double hydroxides (LDH) using simple, affordable and efficient adsorption and coprecipitation based immobilization procedures. Optimization of the preparation was performed using zinc aluminium nitrate (Zn2Al‐NO3) and magnesium aluminium nitrate (Mg2Al‐NO3) LDH as immobilization supports, and the protein‐to‐LDH weight ratio (Q) was varied. The highest immobilization yields (98–99%) and highest relative specific activities (4.2–4.4 U⋅mg−1 for the immobilized enzyme compared to 4.5 U⋅mg−1 for the free enzyme) were both achieved when using a protein‐to‐LDH weight ratio (Q) of 0.38. Efficient lyophilization of the LDH‐TK bionanocomposites thus synthesized was proven to allow easy use and storage of the supported TK with no significant loss of activity over a three‐month period. The kinetic parameters of the LDH‐TK enzyme were comparable to those of the free TK. The LDH‐TK enzyme was finally tested for the synthesis of L ‐erythrulose starting from hydroxypyruvate lithium salt (Li‐HPA) and glycolaldehyde (GA) as substrates. L ‐erythrulose was characterized and obtained with an isolated yield of 56% similar to that obtained with free TK. The reusability of the LDH‐TK biohybrid material was then investigated, and we found no loss of enzymatic activity over six cycles.  相似文献   

19.
Poly(vinyl alcohol) cross-linked with para-formaldehyde (PVA–F) and natural polysaccharide–chitosan in bead form and salicylic acid–resorcinol–formaldehyde polymeric resin (SRF) in powder form were used for immobilization of β-galactosidase through covalent linkages. Various activation processes and conditions were optimized. Immobilized enzyme showed very good storage stability at room temperature. Durability of the enzyme was also improved on immobilization. On repeated use of enzyme immobilized on chitosan beads, no loss was observed in enzyme activity even after 10 batches. Michaelis constant Km and maximum reaction velocity Vm were calculated for free and immobilized enzyme systems. Effect of pH and temperature on enzyme activity was estimated and energy of activation (Ea) and inactivation constant (Ki) for free and immobilized enzyme were calculated. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
The stability and reusability of soluble enzymes are of major concerns, which limit their industrial applications. Herein, alkaline protease from Bacillus sp. NPST-AK15 was immobilized onto hollow core-mesoporous shell silica (HCMSS) nanospheres. Subsequently, the properties of immobilized proteases were evaluated. Non-, ethane- and amino-functionalized HCMSS nanospheres were synthesized and characterized. NPST-AK15 was immobilized onto the synthesized nano-supports by physical and covalent immobilization approaches. However, protease immobilization by covalent attachment onto the activated HCMSS–NH2 nanospheres showed highest immobilization yield (75.6%) and loading capacity (88.1 μg protein/mg carrier) and was applied in the further studies. In comparison to free enzyme, the covalently immobilized protease exhibited a slight shift in the optimal pH from 10.5 to 11.0, respectively. The optimum temperature for catalytic activity of both free and immobilized enzyme was seen at 60 °C. However, while the free enzyme was completely inactivated when treated at 60 °C for 1 h the immobilized enzyme still retained 63.6% of its initial activity. The immobilized protease showed higher Vmax, kcat and kcat/Km, than soluble enzyme by 1.6-, 1.6- and 2.4-fold, respectively. In addition, the immobilized protease affinity to the substrate increased by about 1.5-fold. Furthermore, the enzyme stability in various organic solvents was significantly enhanced upon immobilization. Interestingly, the immobilized enzyme exhibited much higher stability in several commercial detergents including OMO, Tide, Ariel, Bonux and Xra by up to 5.2-fold. Finally, the immobilized protease maintained significant catalytic efficiency for twelve consecutive reaction cycles. These results suggest the effectiveness of the developed nanobiocatalyst as a candidate for detergent formulation and peptide synthesis in non-aqueous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号