首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The applicability of high performance size-exclusion chromatography was tested for anionic polymers with a new type of column. It was found that a solvent salt concentration of 0.1M and an elevated temperature (60°C) prevented adsorption of the polystyrene sulfonate standards on the column packing. The calibration curve and the effect of the concentration on the retention volume remained, however, colum-dependent. We concluded also that the use of the column was restricted to the linear range of the calibration curve and to concentrations below 1 mg mL?1 for the highest molecular weight standards. The influence of the flow rate (below 1 mL min?1) on the retention volume was negligible. The main cause of errors when the universal calibration technique is used originated in the experimental determination of the intrinsic viscosities of the standards. The combination of the errors on the viscosity and on the experimentally determined retention volume easily introduced an error of 15% on the determined molecular weight of the sulfated polysaccharide k-carrageenan. The use of the universal calibration method for an exact molecular weight determination of anionic natural polymers is therefore still questionable.  相似文献   

2.
New methods for calibrating SEC columns by means of polydisperse polymer samples with known Mn and Mw have been tested with computer-generated chromatograms and with experimental data of high-performance SEC. Calculations with the artificial chromatograms show that accurate calibration dependences can be recovered even when polymers with broad and/or bimodal molecular weight distributions are used as standards. Polystyrene calibration calculated by the proposed method from chromatograms of five polydisperse polystyrenes follows closely the curve obtained in a conventional manner from nine narrow polystyrene standards. The dependence log M vs. ν for PMMA determined from chromatograms of six PMMA samples with moderately broad molecular weight distributions agrees well with the curve obtained by shifting the dependence for polystyrene using the universal calibration concept. The new method is particularly useful when SEC columns are to be calibrated for dextrans in water, where only a few standards having a rather broad molecular weight distribution are available, and can considerably improve the accuracy of molecular weight determination by SEC.  相似文献   

3.
The reduction in molecular dimensions due to the presence of short side chains in otherwise linear polyolefins can very simply by calculated by assuming that the configuration of the main chain is not influenced by the side chains. This enables us to express the intrinsic viscosity–molar mass relationship as a function of the mass fraction of side chains (S): [η] = (1 ? S)α+1KPEMνα and, with use of the universal calibration principle, to convert the GPC calibration for purely linear polymers samples into the calibration for short-chain branched polymers: M* = (1 ? S)M. Experimental data from literature on short-chain branched poly-ethylenes, and our own data on ethylene–propylene copolymers are used to verify the above assumption. It appears that the experimentally found relations between [η], Mw and M*w (GPC) within the usual accuracy justify this approach.  相似文献   

4.
The Benoit universal calibration method has been tested for evaluation of GPC data of polydimethylsiloxane (PDMS) in toluene at 60°C. For the conversion of the calibration curve for polystyrene to the PDMS calibration curve, the Mark–Houwink equation for PDMS in toluene at 60°C was derived: [η] = 9.77 × 10?5 M0.725. The applicability of this universal calibration was proved by the experimental results on five PDMS model samples. For the correct evaluation of the PDMS elution curve, the use of the true calibration is inevitable, because the hydrodynamic volume of PDMS molecular weight unit is somewhat different from the polystyrene one.  相似文献   

5.
BACKGROUND: Number‐average molecular weight, M?n, is an important characteristic of synthetic polymers. One of the very few promising methods for its determination is size‐exclusion chromatography (SEC) using on‐line viscometric detection and assuming the validity of the universal calibration concept. RESULTS: We have examined the applicability of this approach to the characterization of statistically branched polymers using 22 copolymers of styrene and divinylbenzene as well as 3 homopolymers of divinylbenzene with various degrees of branching. SEC with three on‐line detectors, i.e. concentration, light scattering and viscosity, enables us to evaluate experimental data by various computational procedures yielding M?n and weight‐average molecular weight, M?w. Analysis of the results has shown that the universal calibration theorem has limited validity, apparently due to the dependence of the Flory viscosity function on the molecular shape, the molecular weight distribution and the expansion of molecules. CONCLUSION: For complex polymers, the universal calibration, i.e. the dependence of the product of intrinsic viscosity and molecular weight, [η]M, on elution volume, can differ in values of [η]M from those obtained for narrow molecular weight standards by 10–15%. The method studied is helpful for the determination of M?n of polymers, in particular of those with very broad molecular weight distribution, such as statistically highly branched polymers. Copyright © 2008 Society of Chemical Industry  相似文献   

6.
Multidetector size exclusion chromatography (SEC) is used to simultaneously determine molecular weight and number of reactive end groups per chain (functionality) of poly(tetramethylene glycol)s. Hydroxyl groups are first quantitatively derivatized with phenyl isocyanate, providing an end-group-selective UV-absorbing tag. The number of end groups per chain is then determined from the SEC chromatogram using a UV detector. Molecular weight at each retention volume and the number-average molecular weight of the whole polymer are calculated by four methods involving (1) a concentration detector and a narrow standard log M calibration curve, (2) the UV detector and a narrow standard log M calibration, (3) a viscometry detector and a universal calibration curve, and (4) combined differential viscometry and concentration detectors using a universal calibration curve. The multidetector experiment provides a unique opportunity to assess the accuracy and limitations of each approach on low-molecular-weight polymers. In particular, the effect of end groups on the concentration detector response and the application of universal calibration principles at small molecular sizes are important factors. It is shown that the concentration response can be corrected by a simple relationship between detector response and reciprocal molecular weight. Also, the quality of calibration curves is critical to the calculation of accurate molecular weight. In general, log M calibration curves provide superior results to universal calibration methods. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Three branching functions are evaluated for use in the measurement of random branching by GPC. Initial evaluations of the functions g1/2, g3/2, and h3 were made by computer simulations of GPC experiments using published data of lightly and highly randomly branched polymers. Actual GPC experiments were then performed on characterized samples of lightly and highly branched styrene–divinylbenzene copolymers. The results indicate that h3 adequately predicts branching and molecular weight at all branching densities, whileg1/2 is accurate only for lightly branched polymers and g3/2 is accurate only for highly branched polymers. A means for predicting the M–[η] curve for branched polymers from the M–[η] calibration curve for linear polymer is proposed.  相似文献   

8.
Criteria for establishing a universal GPC calibration for poly-1,2-butadiene on the basis of polystyrene standards are considered. The number-average molecular weights of the two polymers are related by a linear expression on the assumption that their respective Mark-Houwink exponents are equal. The coefficient Cn of this expression, determined from GPC and viscosity measurements, remained constant for a considerable range of molecular weights and polydispersities. The applicability of Cn beyond the interval of present measurements is considered on the basis of results in the literature. The results are comparable to those obtained from a universal calibration based on the unperturbed dimension of polymer chains, but do not agree with those obtained from a model based on extended length.  相似文献   

9.
The number average molar mass Mn of poly(octadecene-alt-maleic anhydride) (PODMA) copolymers calculated from data obtained by size exclusion chromatography (SEC) using a polystyrene (PS) calibration was found to be inaccurate. The use of SEC combined with dilute solution viscometry enabled a method to be developed using an iterative approach, which does not require knowledge of the Mark-Houwink constants for PODMA samples. A new calibration curve was constructed as a plot of molar mass Mu for PODMA. True number-average molar masses Mn (true) calculated using the new calibration are approximately twice the apparent molar mass Mn (app) based on a PS calibration for higher molar mass samples (>10?000 g mol−1).  相似文献   

10.
Tensile retraction measurements have been made on unfilled rubbers cured with either sulfur or dicumyl peroxide to different levels of crosslink density. The rubbers chosen were emulsion and solution polymerized anionic SBRs, cis-polybutadiene, natural rubber, and anionic 1,4-polybutadienes of different molecular weight. The measured molecular weight between crosslinks (Mc) at each extension gave a smooth curve when plotted against the maximum extension (Λmax) used for the measurement. This curve was separated into three linear regions that characterize the cured rubber. The first region, above about 30% elongation, gave a Λmax = 1 intercept that decreased with either increased polymer Mn or increased level of curatives. Subtracting this calculated crosslink density from the measured crosslink density below about 30% elongation gave another smooth curve when plotted against Λmax. A second linear relationship was described in the general range of 5-30% elongation. Below about 5% elongation, a third linear relationship was found. This line was determined from the differences between the calculated and the observed crosslink densities in the lowest strain region of the intermediate strain plot. Possible explanations of these three linear regions have been made. Supporting evidence was gained from temperature-dependent experiments as well as from correlation of experimental results with polymers of different values of Tg.  相似文献   

11.
A series of randomly branched copolymers of styrene and divinylbenzene were prepared using a benzoyl peroxide-initiated free-radical bulk polymerization at 78°C. DVB contents were varied from 0.01% to 2%. Two samples were polymerized with 0.4% DVB to different conversions: series 9A at 6% conversion and series 9B at 15% conversion (just short of the gelation point). Both samples were fractionated and the fractions characterized by ultracentrifugation, light scattering, osmometry, viscometry, and gel permeation chromatography. The data indicated that the fractions were not of narrow MWD and that the breadth of the MWD of the fractions from series 9B were greater than those of 9A. GPC calibration curves of M, [η], and M [η] were generated for both 9A and 9B fractions by employing curve-fitting techniques to the GPC data. For all of the fractions 9B, the molecular weight calibration provided accurate values of M?z, M?w, and M?n, suggesting that no serious peak spreading had occurred in the GPC experiments. The universal calibration parameter M[η] for the 9A fractions agreed with that of linear polystyrene, while that of the high-conversion series 9B did not. It will be shown in a later paper that series 9B is highly branched, while 9A is lightly branched. Consequently, it is recommended that any GPC analysis of branching units make an allowance for the deviation of highly branched polymers from the linear M[η] calibration curve.  相似文献   

12.
Five different types of calibration curve currently used in size exclusion chromatography-differential viscometer (SEC–DV) systems were identified and their use summarized. A simple method of deriving weighting factors for fitting local intrinsic viscosity calibration curves was shown to greatly improve the precision of calculated molecular weight distributions. The problem of reliably extrapolating the fitted curves to allow for differences in sensitivity among detectors has yet to be examined. With regard to Mark—Houwink constants, a method of fitting data from the SEC–DV system to obtain more statistically sound values was derived. For the data used here, the new method involves fitting a plot of logarithm of the local intrinsic viscosity of the sample vs. logarithm of the universal calibration curve parameter, Ji. Results for the data obtained appeared only slightly more precise than those for the traditional method. However, the new method promises improved reliability. © 1993 John Wiley & Sons, Inc.  相似文献   

13.
Attachment of anticancer agents to polymers has been demonstrated to improve their therapeutic profiles. A new monomer containing camptothecin, 5‐norbonene‐endo‐2,3‐dicarboxylimidoundecanoyl‐camptothecin (NDUCPT) and its homopolymer and copolymer with acrylic acid (AA) were synthesized and spectroscopically characterized. The NDUCPT content in poly(NDUCPT‐co‐AA) obtained by elemental analysis was 51%. The average molecular weights of the polymers determined by gel permeation chromatography were as follows: Mn = 12 100, Mw = 23 400 g mol?1, Mw/Mn = 1.93 for poly(NDUCPT), Mn = 15 400, Mw = 28 300 g mol?1, Mw/Mn = 1.83 for poly(NDUCPT‐co‐AA). The IC50 value of NDUCPT and its polymers against U937 cancer cells was larger than that of CPT. The in vivo antitumour activity of all polymers in Balb/C mice bearing the sarcoma 180 tumour cell line was greater than that of CPT at a dose of 100 mg kg?1. Copyright © 2003 Society of Chemical Industry  相似文献   

14.
Equations have been derived that relate the statistical moments of uncorrected and spreading-corrected chromatograms for a general form of the spreading function in gel permeation chromatography of polydisperse macromolecules. The first moment (centroid) of the chromatogram is shown to be directly given by the centroid, In M*, of a suitably defined molecular weight distribution function of the polydisperse sample, regardless of the position of the calibration dependence, provided it is linear. Both the molecular weight M* associated with the centroid of the chromatogram and its second central moment (variance) are but little sensitive to the shape of sample molecular weight distribution and can be easily calculated from the polydispersity index Mw/Mn, at least for polymers of a not excessively broad distribution. The derived relations are shown to find application in the calibration of GPC columns by means of characterized, polydisperse standards and in the separation of independent contributions to peak width which originate in sample polydispersity and in band broadening processes in the column. Improved column- and packing performance criteria are also proposed.  相似文献   

15.
An iteration method has been developed to prepare a calibration curve for gel permeation chromatography (GPC). It requires a number of samples of the same polymer which may have broad molecular weight distributions (MWD) of which two molecular weight averages must be known previously. The method has been applied to dextran standards with known M w and M n. Modifications involving the use of branched polymers are discussed.  相似文献   

16.
A magnetoelectric (ME) heterostructure was fabricated by depositing a Ni-Mn-Ga (NMG) magnetic film on an antiferroelectric (AFE) PLZST—(Pb, La)(Zr, Sn, Ti)O3—ceramic substrate. Significant and reversible electric field-induced relative magnetization changes (∆M/M0) were firstly observed in this magnetic/AFE heterostructure, and the ∆M/M0 vs electric field loops have been found to correspond well with the strain-electric field curve of PLZST ceramic. The maximum ∆M/M0 variation can reach 15%, indicating an obvious strain-mediated converse magnetoelectric (CME) effect. A maximum CME coefficient of 1.14 × 10-9 s/m was obtained at the switching electric fields of PLZST. The collected results suggest that AFE materials with a large electric-field-induced phase transition strain could be alternative candidates in ME coupling heterostructures.  相似文献   

17.
Summary Living polymerization of styrene was obtained in the system 1-phenylethyl chloride/TiC14/Bu2O in mixture of 1,2-dichloroethane and n-hexane (55:45 v/v) at -15°C. The number-average molecular weights (Mn) of the polymers obtained increased in direct proportion to the monomer conversion and agreed well with the calculated values. The first-order kinetic plots were linear. The molecular weight distributions were narrow (Mn/Mn=1.46-1.56). Received: 3 1 January 2002/Revised version: 7 October 2002/Accepted: 7 October 2002 Correspondence to Sergei V. Kostjuk  相似文献   

18.
Natural oil polyols have been intensively developed and successfully used for the production of various polymers, notably polyurethanes. The need to access the average molecular weight (MW) and the MW distribution (MWD) has led to the efforts to have a precise and reliable determination method. A series of commercial polyether polyols, with well‐defined MW, was used as a gel permeation chromatography (GPC) calibration standard to determine the MW of palm olein polyols. This GPC analysis was compared to the one calibrated against the commercially available polystyrene (PS) standards and to the number‐average molecular weight (Mn) obtained via vapor pressure osmometry (VPO) technique. For example, the Mn obtained for palm olein polyol E‐135 calibrated against polyether polyols was 2,537 Da, which was closer to the Mn via VPO (1,618 Da), than the Mn obtained using PS as calibration standards (3,836 Da). Hence, this GPC analysis using polyether polyols as calibration standards can offer reassured determination of MWD of palm olein polyols.  相似文献   

19.
Average molecular weights (Mn, Mw and Mp) are important characteristics of oligomers and polymers, and therefore there is a need to have a precise and reliable determination method. A gel permeation chromatography (GPC) coupled with a single refractive index detector was used to determine the molecular weight distributions of commercial polyether polyols calibrated against a series of polyether polyols with known molecular weights and low polydispersity. Results of these GPC analyses were compared to the ones calibrated against the commercially available polystyrene (PS) standards. The number‐average molecular weights (Mn) obtained with GPC using polyether polyols calibration were closer to the theoretical values than the Mn obtained using PS as calibration standards. Hence, these GPC analyses using polyether polyols as calibration standards can provide reliable determination of molecular weight distribution of polyether polyols and can be potentially applied to natural oil‐based polyols, including palm oil‐based polyols. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42698.  相似文献   

20.
《分离科学与技术》2012,47(3):273-282
Abstract

Calibration in gel permeation chromatography is reviewed with special reference to M[η] as the parameter for universal calibration in the case of polymers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号