首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To improve the performance of nylon 4 membranes, this study attempts to utilize chemical initiation which induces different hydrophilicities vinyl monomers grafted onto nylon 4 membranes. Sodium styrene sulfonate, chloromethyl styrene, styrene, and glycidyl methacrylate were used as grafting monomers. The factors that affect the degree of grafting considered were chemical initiators, pH values, kinds and concentrations of monomers, reaction time, and temperatures. The mechanical strength and the transport properties of these chemical-initiated grafted nylon 4 membranes were also investigated. Both the water flux and the salt rejection of sodium styrene sulfonated-grafted membrane were increased significantly, compared to our previous paper,1 and the casein rejections of all of the four grafted nylon 4 membranes studied exceeded 90%. The quaternized nylon 4-g-poly(chloromethyl styrene) membranes were prepared and possessed high water uptake behavior and high transfer number (0.99) for electrodialysis. The sulfonating process was also applied to improve the hydrophilicity of nylon 4-g-poly(glycidyl methacrylate) membrane so that the water flux and the salt rejection were both increased.  相似文献   

2.
The membrane processes play a significant role in the water and wastewater treatment to remove dissolved solids, especially electrolytes. In this study, the asymmetric mixed matrix membranes based on polyurethane and SAPO-5 zeolite were used on electrolyte (NaCl) removal from water. Using a low operating pressure, the membrane performances (i.e., pure water permeation, flux and salt rejection) were measured. All membranes were showing an increase in water flux when the pressure was increased. This situation shows that the produced membranes were stable in producing flux and were suitable to be used to proceed for membrane testing process. Based on the results obtained, rejection of salt water increased as the pressure given increased for each membrane. The mixed matrix membranes showed the high rejection for the salt water (NaCl 0.02 M). This shows the good performance in both flux and rejection, and even achieves 98% rejection for the NaCl 0.02 M. Based on the experimental results, it is believed that these mixed matrix membranes are suitable for the electrolytes removal applications.  相似文献   

3.
Reverse osmosis (RO) composite polymer membranes were prepared from the organic monomers 3-butenenitrile, propyleneimine, 4-vinylpyridine, and allylamine by plasma polymerization in a radio-frequency discharge. RO performance data (water flux and salt rejection) were obtained as a function of discharge power and deposition time. Membranes were subject to RO testing at 45°C for up to 150 hr to investigate membrane deterioration. No appreciable degradation was observed. Water flux increased significantly with time at 45°C, and improved salt rejection at 45°C was observed in most cases.  相似文献   

4.
纳滤和反渗透膜表面形貌结构、亲疏水性的性质与膜脱盐率、水通量等性能存在一定关系。对几款商用纳滤、反渗透膜进行表面形貌结构、表面粗糙度、亲水性表征。结果表明,纳滤膜表面平整粗糙度低、亲水性强、脱盐率较低,但水通量高。反渗透膜表面存在大量疏松的峰谷结构,比纳滤膜粗糙度更大、亲水性强。对比两款海水反渗透膜,推测调整反渗透膜"叶片"大小和数量可调节反渗透膜的脱盐率和水通量性能。  相似文献   

5.
The grafting of vinylacetate (VAc) or hydroxyethylmethacrylate (HEMA) onto poly(vinyl chloride) (PVC) has been performed by means of γ-rays or chemical initiators. The grafted polymer so obtained has been separated by selective extraction and submitted to IR spectroscopy in order to check the amount of grafting. The grafting percentage was measured as a function of the grafting conditions. Using the above-mentioned polymer, dissolved again in DMF, asymmetric ultrafiltration membranes have been prepared by the phase inversion technique. The membranes have been tested with Dextran solutions. Their performances have been studied as functions of the grafting amount. The values of rejection and permeating flux demonstrated the effectiveness of the treatment in enhancing the performances of PVC ultrafiltration membranes.  相似文献   

6.
Removal of organic pollutants of petrochemical and agrochemical origin by some commercial reverse osmosis (RO) and nanofiltration (NF) membranes of characterized porosity was investigated. The rejection of organics was shown to depend on both the membrane properties like pore size, membrane material, membrane charge and solute characteristics such as molecule size, charge and polarity. The rejection of the small nonionized organic molecules by the tight pore membranes is influenced by both the sieving parameters (solute and pore size) and by the physicochemical interactions. The rejection of the same pollutants by the wider pore membranes is dominantly influenced by the physicochemical interactions. The rejection of pesticides is prevalently governed by the sieving mechanism based on the size of the solute molecule and the membrane pore size. However, the physicochemical effects cannot be totally neglected, and they can contribute to the rejection of some pesticides by certain membranes.  相似文献   

7.
In this study, we report an easy and novel way to develop high flux aliphatic–aromatic-based thin-film composite (TFC) polyamide osmosis membranes by addition of inorganic metal salts with amine reactants in the reaction system of polyethylene imine (PEI) and 1,3-benzene dicarbonyl chloride. Inorganic metal salts like CuSO4, NiSO4, MgSO4, and Al2(SO4)3 added to block some of the amine groups of PEI through complexation which in turn changes the polycondensation reaction kinetics of amine acid chloride reaction. The prepared membranes were characterized using water contact angle and atomic force microscopy studies and the performances were evaluated both in reverse osmosis and forward osmosis mode. In presence of metal salts in reaction interface, the performance of TFC membranes was greatly enhanced and the optimum metal salt concentration was identified for individual metal salts for maximum performance enhancement. The effects of different anions for same metal ion and different molecular weight of PEI were evaluated on composite polyamide membrane performances. Water permeability (flux) of 63.48 L m?2 h?1 was achieved upon inorganic salt addition compared to the unmodified TFC membranes with flux of 42.1 L m?2 h?1 at similar salt rejection of ~95%. Based on the new findings, a conceptual model was proposed to explain the role of metal ion in amine solution on the resulting characteristics of aromatic–aliphatic type polyamide–polysulfone composite membrane.  相似文献   

8.
High-performance polymers for water desalination were designed. A novel polysulfone was prepared via reaction between a new synthesized pyridine-based diol and bis(4-fluorophenyl) sulfone. Also a series of disulfonated copolymers with sulfonation content of 20–50 wt% were prepared to compare the hydrophilicity with the pristine polymer. The generated membranes were characterized by microscopic, mechanical, and thermal methods, and the influence of sulfonation degree on hydrophilicity, water flux, and salt rejection was followed. Water flux of sulfonated membranes was increased compare to pristine membrane as sulfonation increased, while the salt rejection decreased. Optimum application performance was obtained for membrane with 30 wt% sulfonation content. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48568.  相似文献   

9.
Surface functionalization and modification including the grafting process are effective approaches to improve and enhance the reverse osmosis (RO) membrane performance. This work is aimed to synthesize grafted/crosslinked cellulose acetate (CA)/cellulose triacetate (CTA) blend RO membranes using N-isopropylacrylamide (N-IPAAm) as a monomer and N,N-methylene bisacrylamide (MBAAm) as a crosslinker. The morphology of these membranes was analyzed by scanning electron microscopy and their surface roughness was characterized by atomic force microscopy. The performance of these membranes was evaluated through measuring two major parameters of salt rejection and water flux using RO unit at variable operating pressures. It was noted that the surface average roughness obviously decreased from 148 nm for the pure CA/CTA blend membrane with 2.5% CTA to 110 nm and 87 nm for the grafted N-IPAAm and grafted/crosslinked N-IPAAM/MBAAm/CA/CTA-RO membranes, respectively. Moreover, the contact angle decreased from 51.98° to 47.6° and 43.8° after the grafting and crosslinking process. The salt rejection of the grafted CA/CTA-RO membrane by 0.1% N-IPAAm produced the highest value of 98.12% and the water flux was 3.29 L/m2h at 10 bar.  相似文献   

10.
In processing full-fat soy flour to produce an acid-precipitated lipid protein concentrate, there results a by-product whey fraction which, because of its high biological oxygen demand, represents a serious disposal problem. Processing of food waste streams by reverse osmosis has received considerable attention because of its low theoretical energy requirement, since no phase change is involved. A series of statistically designed and analyzed experiments were conducted on a pilot-plant reverse osmosis unit to study the effect of the operating parameters on solute and solvent transport in cellulose acetate membranes. Sucrose and sodium chloride solutions were tested in addition to soybean whey to relate the mixed solute system in whey to that of single-solute organic and inorganic feed solutions. Water flux was shown to have an Arrhenius dependency on temperature, and some membrane compaction was observed with the more porous membrane. Concentration polarization for sucrose and sodium chloride solutions increased linearly with water flux. Solute flux for soybean whey solutions decreased with molarity and was independent of pressure, whereas solute rejection increased with temperature and pressure and was independent of molarity. Good agreement was obtained using the derived parameters A, B, and τ for soy whey in the diffusion transport model when compared to the observed experimental values.  相似文献   

11.
《分离科学与技术》2012,47(1):14-26
The effects of cyclic changes in feed water temperature and pressure on permeate flux, solute rejection, and compaction in spiral wound composite polyamide seawater reverse osmosis membranes were examined with pure water and 4% NaCl solutions. A membrane permeability hysteresis or memory effect due to the up and down temperature and pressure sequences was only seen with the saline water studies. However, the observed changes appeared to be reversible and were consistent with the Spiegler-Kedem/ Film Theory and the Kimura-Sourirajan Analysis/ Film Theory models. The overall results suggest that the net effect on permeance and solute rejection is the consequence of several interactions with feed/operating temperatures affecting membrane porosity and water/solute cluster size, and transmembrane pressure influencing membrane compaction.  相似文献   

12.
Cellulose acetate butyrate (CAB) membranes gave high salt and urea rejection with a water flux of about 3 gfd (gallons/ft2 · day) during hyperfiltration at 600 psig. Evidence was obtained which indicated that the CAB membranes used in this work were asymmetric. Membrane heat treatment increased urea rejection significantly while salt rejection was invariant, and water flux decreased. An increase in feed solution temperature caused a significant increase in water flux and a small decrease in urea and salt rejection. Increasing the pressure increased water flux and urea and salt rejection. During a 400-hr life test, the water flux decreased by about 25% while urea rejection increased and salt rejection was invariant. The influence of pressure, membrane heat treatment, and compaction during CAB membranes life testing on urea and salt rejection provided evidence that these two solutes were rejected by somewhat different mechanisms. Salt rejection was consistent with a solution–diffusion mechanism for membrane transport and uncoupled flow while changes in urea rejection with pressure, membrane heat treatment, and compaction during life testing suggested that urea was at least partially rejected by membrane exclusion resulting from geometric factors.  相似文献   

13.
14.
How Y. Ng 《Desalination》2005,174(2):211-217
This study investigated the rejection of salt and inert organic compounds by reverse osmosis membranes during the initial stage of colloidal fouling. Results of laboratory-scale experiments showed that colloidal fouling caused a marked decrease in flux, salt rejection and rejection of organics with molecular weight (MW) smaller than about 100 g/mol. Removal of neutrally charged organics was mainly by size or steric exclusion. Rejection of xylose, which has MW >100 g/mol, was not affected much by colloidal fouling. The decrease in salt and low MW organic rejections during the initial stage of colloidal fouling was attributed to cake-enhanced concentration polarization, whereby the colloidal cake layer hindered back diffusion of solutes from the membrane surface to the bulk solution, resulting in higher solute concentration gradient across the membrane. At higher channel wall shear rate, the rates of colloidal deposition, flux decline, decrease in salt rejection, and decrease in low MW organic rejection were lower.  相似文献   

15.
Ceramic membranes with pore size of 0.1 and 0.2 µm are used for the separation of nickel catalyst. Effect of trans‐membrane pressure (TMP), linear velocity, temperature and nickel content (solute) on flux and rejection has been investigated. The flux increased with increase in pore size of the membrane. The rejection characteristics were similar for 0.1 and 0.2 µm membranes. The nickel content and iodine value of the membrane‐filtered oil was comparable with that of conventional processes. Permeate flux increased with increase in temperature. Flux increased with increase in linear velocity and a marginal rise was observed above 2.09 m/s. The rejection characteristics were only slightly affected by higher linear velocity. The flux improved after back flushing. The average flux was higher with back flushing as compared to continuous (with out back flushing) filtration process. The results indicated that the secondary layer effect was more pronounced in microfiltration. The flux decreased with increase in solute concentration. The rejection characteristics were not affected by solute concentration. The rejection characteristic of the membranes remained unaltered after membranes were repeatedly cleaned with sodium hydroxide and HCl solutions, however, the flux was decreased marginally.  相似文献   

16.
Sulfonation and amination of polysulfone (PSf) were performed in this study to improve the hydrophilicity of PSf membranes. The sulfonated polysulfone (SPSf) and aminated polysulfone (APSf) membranes with a higher degree of reaction exhibited a higher water flux and worse mechanical strength than that of the original PSf membranes. Therefore, SPSf/PSf and APSf/PSf blended membranes were prepared in this study to improve their individual properties. By altering the formulations of casting solutions and forming conditions of the membranes (e.g., blending ratios of both polymers, additives, evaporation time, and gelation temperature), different SPSf/PSf and APSf/PSf blending membranes were prepared; and their performance in water flux and salt rejection were measured and are discussed. A difference in salt rejection was also observed between both SPSf/PSf and APSf/PSf blending membranes that rejected the various salts. Experimental results indicated that water flux increased and salt rejection decreased with an increase of the SPSf/PSf blending ratio from 1: 9 to 2: 1. The order of salt rejection, in which the SPSf/PSf blended membranes rejected four varieties of salts, was Na2SO4 > MgSO4 > NaCl > MgCl2. Furthermore, the opposite order was obtained by the APSf/PSf blended membranes. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
《分离科学与技术》2012,47(9):1298-1307
To investigate nanofiltration (NF) separation for recycling polyethylenglycol (PEG) from an ion partition process using an aqueous two-phase system, fractionation performance of five different NF membranes (NF270, SR3, SR100, SR2, and BW30) with solutions of NaNO3, KClO4, and PEG 4000 in water comprising various mixtures were studied. PEG rejections and salt passage were analyzed and explained based on size exclusion as well as electrostatic interactions. The highest permeate flux at high rejection of PEG as well as the lowest salt rejections were obtained with SR2 and NF270 membranes. Similar salt rejections were observed for mixed solute solutions and complex mixtures, all following this trend: SR3 > NF270 > SR2. The PEG rejections were well above 95%. This study also revealed that high salt passage of above 90% could be achieved with the same NF membrane only by unstirred conditions through concentration polarization mechanism; however, at the expense of low flux, especially with high PEG concentrations.  相似文献   

18.
S.V. Joshi  A.V. Rao 《Desalination》1984,51(3):307-312
Experimental data on reverse osmosis using a sodium chloride solution by cellulose triacetate membranes are presented. The investigation involved studies on the composition of membrane casting solutions and their effects on the performance. A higher polymer concentration (11–13%) is found suitable for production of a uniform and highly salt rejecting membrane. Salt rejection of 99.0% and 4–5 GFD product water flux were obtained at 1000 psi operating pressure using 30,000 ppm TDS seawater in the initial experiments.  相似文献   

19.
选用两种国产纳滤膜NF1和VNF2进行除氟的实验研究,考察了不同的原水pH、操作压力、进水F-浓度、温度以及腐殖酸的浓度对纳滤除氟截留率以及膜通量的影响.实验结果表明:VNF2膜的截留率高于NF1膜,而膜通量则低于NF1;同时两种膜的最佳操作条件为pH在6.5~7.0,温度在18~23℃,操作压力为0.4 MPa,进水...  相似文献   

20.
姬朝青 《化工学报》2008,59(3):615-623
在多孔膜溶质的脱除率方程和溶液渗透通量方程的基础上由溶液电中性条件导出了荷电膜的单价电解质、中性分子混合溶液体系离子的脱除率方程,中性分子的脱除率方程,溶液渗透体积通量方程和离子、中性分子的浓缩比表达式。由方程的函数性质讨论了荷电膜的单价电解质、中性分子混合溶液的溶质组分脱除率和溶液渗透体积通量随离子浓度、pH值的变化规律。预测了盐和中性分子的脱除率和溶液渗透体积通量随浓度变化曲线出现极大和极小值的现象,由此得出了下列结果:随pH值的增加,单价电解质溶液的阳离子、阴离子和氢离子的脱除率变化顺序为由 R M+ > R X- > R H+变化到R M+ =R X-> R H+再变化到R X->R M+> R H+,离子脱除率变化曲线将出现极大和极小值;有机酸的总脱除率表达式阐明了文献中的可电离有机分子与pH值的关系式中参数的物理意义,解释了该关系式的对氨基苯甲酸水溶液的脱除率随pH值变化的拟合曲线高于脱除率实验值的原因,解释了对氨基苯甲酸的甲醇溶液的溶质脱除规律;离子的浓缩比依赖于料液中离子组成和离子所对应盐的浓缩比。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号