首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A cone calorimeter is used to determine the fire performance of polymer composite materials containing combustible reinforcing fibres in addition to combustible matrix resins. Extended-chain polyethylene and aramid fibre-reinforced composites containing epoxy, vinylester and phenolic matrix resins are examined at various cone irradiances. Values for time to ignition, rate of heat release, effective heat of combustion, smoke density and evolved carbon monoxide and carbon dioxide are reported for the reinforcements, matrix resins and composites. The reinforcements have a significant effect on the fire-hazard properties of the composite materials. For the epoxy and vinylester composites, times to ignition reflect those of the component of higher ignitability. This was not the case for the aramid-reinforced phenolic composite, in which the resin surface layer hinders combustion of the fabric reinforcement. Resin and reinforcement contributions to the composite rate of heat release behaviour as a function of time are generally discernible.  相似文献   

2.
The ignitability of solids, including fire-retardant-containing polystyrene, is reported using results of a small-scale thermal radiation exposure test (a modified ISO ignitability test procedure). Additional information is provided from the results of exposure to convective heating and from oxygen index determinations. The use of a permanent sample mask and smaller samples than described in the ISO procedure proved convenient. The ISO procedure was found useful for determining the response of ignition time to changes in radiant flux. Good agreement was found with the analysis of Quintiere and Harkleroad for most samples but not with polystyrene, with and without halogen fire retardant. The increase in ignition resistance with fire retardant concentration suggested by the oxygen index is not always consistent with the ignition delay times under radiative or convective assault.  相似文献   

3.
This study aims to develop a complete methodology for assessing flammability hazards of typical fuels (ie, transformer oil, hydraulic oil, gear oil, and lubricating grease) used in a wind turbine nacelle by combining different experimental techniques such as thermogravimetric analysis and cone calorimetry. Pyrolysis properties (onset temperature, temperature of maximum mass loss rate, and mass residue) and reaction‐to‐fire properties (ignition time, heat release rate, mass loss rate, and smoke release rate) were determined and used for a preliminary assessment of thermal stability and flammability hazards. Additional indices, for ignition and thermal behavior (effective heat of combustion, average smoke yield, and smoke point height, heat release capacity, fire hazard parameter, and smoke parameter, were calculated to provide a more advanced assessment of the hazards in a wind turbine. Results show that pyrolysis of transformer oil, lubricating grease, hydraulic oil, and gear oil occur in the range of 150°C to 550°C. Lubricating grease and transformer oil show the higher and lower thermal stabilities with maximum pyrolysis rate temperatures of 471°C and 282°C, respectively. The measured relation between ignition time and radiant heat flux agrees well with Janssens method (a power of 0.55). The aforementioned indices appear to provide a reasonable prediction of performance under real fire conditions according to a full‐scale fire test documented by Declercq and Van Schevensteen. The results of the study indicate that transformer oil is the easiest to ignite while lubricating grease is the most difficult to ignite but also has the highest smoke production rate; that transformer oil has the highest heat release rate while gear oil has the lowest; and that the fire hazard parameter is the highest for transformer oil and the smoke parameter is the highest for lubricating grease. The potential of this type of work to design safer wind turbines under performance‐based approaches is clearly clarified.  相似文献   

4.
Burning rate is a key factor in modeling fire growth and fire endurance of wood structures. This study investigated the burning rate of selected wood materials as determined by heat release, mass, loss and charring rates. Thick samples of redwood, southern pine, red oak and basswood were tested in a heat release rate calorimeter. Results on ignitability and average heat release, mass loss and charring rates are reported for a heat flux range between 15 and 55 kw m?2. In this range, burning rate increased linearly with heat flux. Burning rate was very species dependent. Heat release rate was related to mass loss by effective heat of combustion, which also increased with heat flux. Charring rate was related to mass loss rate and original wood density. Important char property data such as yield, density and contraction are reported. A simplified calculation method is proposed for calculating mass loss rate and charring rate based on heat release rate.  相似文献   

5.
Eyewitnesses describe burning pavement surfaces in extreme fire scenarios. However, it was believed that the pavement plays a negligible role in comparison to other items feeding such an extreme fire at the same time. The asphalt mixtures used differ widely, thus raising the question as to whether this conclusion holds for all kinds of such materials. Three different kinds of asphalt mixtures were investigated with the aim of benchmarking the fire risks. Cone calorimeter tests are performed at an irradiance of 70kWm?2. All three investigated asphalts burn in extreme fire scenarios. The fire response (fire load, time to ignition, maximum heat release rate and smoke production) is quite different and varies by factors of up to 10 when compared to each other. The fire load per mass is always very low due to the high content of inert minerals, whereas the effective heat of combustion of the volatiles is quite typical of non‐flame retarded organics. The heat release rate and fire growth indices are strongly dependent on the fire residue and thus the kind of mineral filler used. Comparing with polymeric materials, the investigated Mastic Asphalt and Stone Mastic Asphalt may be called intrinsically flame resistant, whereas the investigated Special Asphalt showed a pronouncedly greater fire risk with respect to causing fire growth and smoke. Thus the question is raised as to whether the use of certain kinds of asphalts in tunnels must be reconsidered. Apart from the binder used, the study also indicates varying the kind of aggregate as a possible route to eliminate the problem. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
In this work, cone calorimeter tests were conducted to investigate fire properties of interior materials (floor covering [FC], aluminum plate covered with paint [APCP], light diffuser [LD], and gel coat [GC]) used in low‐floor light‐rail trains. Ignition time (tig) of each material decreases with the increase of radiative heat flux. The decreasing order of the four samples by ignition time under the same radiative heat flux is LD > APCP > FC > GC. The heat release rate (HRR), peak value of HRR (PHRR), time from ignition to PHRR (tp), fire growth rate index (FIGRA), and fire growth index (FGI) rise with the increasing radiative heat flux. For the FC, LD, and GC, single HRR peak is observed in the HRR history while three peaks are observed for APCP. For PHRR, LD > FC > APCP > GC, while for tp, GC < FC < APCP < LD. Under most conditions, the FIGRA and FGI of the FC is the highest among the four materials. Results of this work are beneficial to evaluate fire hazard of low‐floor light‐rail train and determine the emphasis of fire prevention.  相似文献   

7.
Some examples of the application of fire tests to hazard and risk assessment and some of the problems to be encountered are described. Reference is made to theoretical studies designed to show how to obtain basic data on material properties from ignitability and flame spread tests, and recent correlations of the rate of heat release required to cause flashover are presented. Progress in predicting fire growth from theory for certain idealized conditions will increasingly condition the choice of which processes shall be the subject of tests.  相似文献   

8.
D. Bryant 《火与材料》1995,19(3):119-126
Two experiments were performed on board an aircraft flying repeated parabolic trajectories to generate free-fal conditions. The first experiment investigates the way in which rate of heat release (RHR) varies with gravity for a candle flame under an imposed low-speed flow. In line with previous studies of flame spread rate it has been shown that rate of heat release drops significantly in imcrogravity. The heat loss due to radiation decreases by a larger proportion than that due to non-radiative processes indicating a lower flame temperature. The RHR from a microgravity flame is flow rate dependent, increasing for increased flow rate at air speeds under 0.03 ms?1. For the geometry used in this experiment hypergravity caused only a small increase in RHR. The second experiment studied the ignitability of thermoplastics under an imposed radiant heat flux. The ignition test apparatus consists of a conical spiral heating element positioned horizontally above the sample, a continuous spark ignition source and a removable heat shield. Experiments were conducted in a sealed pressure chamber on samples of either PMMA or POM, 1.5 mm thick, with a ceramic backing. There is some indication that gravity influences the time to ignition for some materials.  相似文献   

9.
Ignitability, one of the new fire test methods for building materials developing within the International Standards Organization is compared with the national fire test methods in Austria, Britain, France, Germany and Scandinavia. Different commercial wood-based panels have been tested, including fire retardant treated panels. The International Standards Organization ignitability test measures the time to ignition at radiation intensities from 1 to 5 Wm ?2; it seems to be able to distinguish between different materials in an intelligible way. An evaluation of the results of this ignitability test is discussed. One possibility which is proposed here is to calculate the mean time to ignition at different fixed radiation intensities; such a mean value simplifies the evaluation and takes into account all the test data. Agreement with the national fire test methods is rather low, since they partly measure other fire parameters; agreement with the Austrian Schlyter method, which also evaluated ignitability, is somewhat better and agreement between the national fire test methods is relatively good for wood-based panels. This is consistent with earlier experience, which has shown that mainly new types of materials behave differently according to different national test methods.  相似文献   

10.
聚合物/层状硅酸盐纳米复合材料阻燃性能的全面评价   总被引:5,自引:3,他引:2  
从热释放速率、质量损失速率、引燃时间、火灾性能指数、氧指数和UL94阻燃级别等方面,对聚合物/层状硅酸盐纳米复合材料(PLN)的阻燃性能进行了全面评价,探讨了PLN的阻燃机理,指出了未来PLN的研究方向。  相似文献   

11.
The development of methods to predict full‐scale fire behaviour using small‐scale test data is of great interest to the fire community. This study evaluated the ability of one model, originally developed during the European Combustion Behaviour of Upholstered Furniture (CBUF) project, to predict heat release rates. Polyurethane foam specimens were tested in the furniture calorimeter using both centre and edge ignition locations. Input data were obtained using cone calorimeter tests and infrared video‐based flame area measurements. Two particular issues were investigated: how variations in incident heat flux in cone calorimeter tests impact heat release rate predictions, and the ability of the model to predict results for different foam thicknesses. Heat release rate predictions showed good agreement with experimental results, particularly during the growth phase of the fire. The model was more successful in predicting results for edge ignition tests than for centre ignition tests and in predicting results for thinner foams. Results indicated that because of sensitivity of the burning behaviour to foam specimen geometry and ignition location, a single incident heat flux could not be specified for generating input for the CBUF model. Potential methods to determine appropriate cone calorimeter input for various geometries and ignition locations are discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
This work provides an up‐to‐date review of the fire properties of poly(vinyl chloride) (PVC) materials, both rigid (unplasticized) and flexible (plasticized). The fire properties addressed include ignitability, ease of extinction (oxygen index), flame spread (small scale and intermediate scale), heat release, smoke obscuration, smoke toxicity, hydrogen chloride emission and decay, and performance in real‐scale fires. This comprehensive review includes a wide selection of references and tables illustrating the properties of PVC materials in comparison with those of other polymeric materials, including, in many instances, wood materials. The work puts these fire properties in perspective, showing that the heat release rate (the key fire property) of rigid PVC (and that of properly flame‐retarded flexible PVC) are among the lower values found for combustible materials. This work also shows that the smoke toxicity and smoke obscuration resulting from burning PVC materials in real‐scale fires is in the same range as those of other materials.  相似文献   

13.
K. T. Paul 《火与材料》1986,10(1):29-39
Both ignition and rate of fire development tests are required to determine the fire performance of upholstered composites. Current practice uses small-model specimens for ignitability tests but rate of burning tests are usually carried out on actual furniture. This paper discuss small- and large-scale tests for upholstered furniture.  相似文献   

14.
A comparison is presented of cone calorimeter heat release data between fire retardant treated and untreated wood products. The test results show significant differences between these two groups. The parameters included in the comparison are time to ignition, rate of heat release (peak and average values) and total heat release. The wood-based products were also tested in different small-scale national standard fire tests and in the full-scale room fire test. Fire retardant wood products achieve an improved classification both in present national systems and in possible new systems based on the cone calorimeter and the room fire test.  相似文献   

15.
Upholstered furniture has been shown to present a significant fire hazard as it is relatively easy to ignite from small sources, such as cigarettes and matches, and burns rapidly producing large amounts of heat, smoke and toxic gases. Current UK legislation, controls and specifications largely concern the ignition resistance of materials and composites used in upholstered furniture. Ignition resistance is directly related to the probability of a fire starting in a given situation, but does not necessarily affect the fire severity and its consequences. The rate of fire development is governed by the rates of generation of heat, smoke and toxic gases and also by the rate of flame spread. At present there is no widely accepted way of determining these properties although tests to do so are being developed. This paper will review work on the burning behaviour of upholstered furniture, the development of combustion-modified polyurethane foams, methods of test for ignitability and performance specifications. It will also review the methods used to determine the rates of fire development and will indicate the possibilities for the future.  相似文献   

16.
Theoretical formulations are presented for the fire growth processes under external radiant heating. They included ignition, burning and energy release rate, and flame spread. The behaviour of these processes with external heating is described along with the critical conditions that limit them. These include the critical heat fluxes for ignition, flame spread and burning rate. It is shown how these processes and their critical conditions depend on a limited number of properties measurable by a number of standard test methods. The properties include heat of combustion, the heat of gasification, ignition temperature and the thermal properties of the material. Alternatively, the properties could be related to parameters easily found from data; namely: (1) the critical heat flux (CHF) for ignition; (2) the slope of the energy release rate with externally imposed flux, defined as heat release parameter (HRP); and (3) the ignition parameter, defined as thermal response parameter (TRP). It is further shown that the flame heat flux differences between small laminar flame ignition sources and larger turbulent flames can affect flame spread due to heat flux and ignition length factors. Finally, it is found that the critical energy release rates theoretically needed for ignition, sustained burning, and turbulent upward flame spread are roughly 13, 52, and 100 kW/m2, respectively, and independent of material properties. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
This study was aimed to investigate the influence of calcium carbonate (CaCO3), a widely used filler, on the fire retardancy of intumescent polypropylene composites. Two intumescent systems based on (1) mixture of ammonium polyphosphate (APP) and pentaerythritol and (2) surface‐modified APP (m‐APP) were examined. In terms of steady heat release rate, total heat evolved, and fire growth index determined by mass loss calorimetry, m‐APP performed markedly superior to APP‐pentaerythritol. The presence of CaCO3 in both intumescent formulations caused significant losses in fire retardant performance assessed by mass loss calorimetry, limiting oxygen index and UL‐94 tests. Peak rates of heat release and mass loss during combustion, and total heat evolved on combustion were increased, whereas time to ignition was decreased. Characterization of fire residues ascribed the mechanism of deterioration in fire retardancy to the formation of porous and nonexpanded crystalline calcium phosphate/CaCO3 residues during combustion rather than the amorphous protective intumescent chars formed in the absence of CaCO3. POLYM. ENG. SCI., 2011. © 2011 Society of Plastics Engineers  相似文献   

18.
Most of the polymeric materials used are easy to ignite and show extensive flame spread along their surfaces. Apart from extensive heat release rates, their short time to ignition (tig), in particular, is a key fire hazard. Preventing ignition eliminates fire hazards completely. Protection layers that shift tig by more than an order of magnitude are powerful flame retardancy approaches presenting an alternative to the usual flame retardancy concepts. Coatings are proposed that consist of a three‐layer system to ensure adhesion to the substrate, acting as an infrared (IR) mirror and protecting against oxidation. The IR‐mirror layer stack is realised by physical vapour deposition in the sub‐micrometre (<1 µm) range, reducing heat absorption by up to an order of magnitude. Not only is the ease of ignition diminished (tig is increased by several minutes), the flame spread and fire growth indices are also remarkably reduced to as little as 1/10 of the values of the uncoated polymers open for further optimization. Sub‐micrometre thin IR‐mirror coatings yielding surface absorptivity <0.1 are proposed as a novel and innovative flame retardancy approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Silicones comprise a wide variety of materials such as fluids, elastomers, resins, and foams. This paper reports the ignitability of some typical silicones under various external radiant heat fluxes. The ignitability of silicones was studied using a cone calorimeter under radiant heat flux levels of 0.5–60 kW m−2. The time to ignition of the silicones was found to be proportional to a power of the incident heat flux that varies from −1.33 to −2.84. For silicone fluids, viscosity (or molecular size) is the key variable in controlling the ignitability. For silicone elastomers, the fillers play an important role in controlling the ignitability, especially at incident heat fluxes lower than 35 kW m−2. The ignitability of silicone resins depends on the chemical structure of the resins: the pure trifunctional resin has the lowest ignitability. The ignitability of the silicone foams having the same density depends on the foam thickness, especially at incident heat fluxes lower than 30 kW m−2. © 1998 John Wiley & Sons, Ltd.  相似文献   

20.
热老化对YJV电缆绝缘护套塑料燃烧性能的影响   总被引:1,自引:0,他引:1  
舒中俊 《中国塑料》2010,24(6):55-57
采用热老化实验箱、锥形量热计和热重分析仪研究了热老化对YJV电缆燃烧性能的影响。结果表明,在加速热老化的前期,电缆的引燃时间逐渐延长;热释放速率的初始峰值逐渐降低;电缆绝缘护套料的引燃和火焰蔓延危险降低;主要原是热老化前期电缆护套料中易分解挥发添加剂大量损失所致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号