首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

2.
This study was conducted to investigate the feasibility of a two‐phase anaerobic treatment system for fat‐containing wastewater. The two‐phase system was composed of a continuously stirred tank reactor for acidogenesis and an upflow anaerobic sludge blanket (UASB) reactor for methanogenesis. Its performance was compared with a conventional single‐phase system of a UASB reactor treating synthetic wastewater containing major long‐chain fatty acids (LCFAs). LCFAs did not cause any significant problem up to the LCFA mixture loading rate of 1.21 kg LCFA‐COD m?3 day?1 (3500 mg LCFA‐COD dm?3) in both systems. However, the efficiency of the single‐phase system deteriorated at loading rates above 1.38 kg LCFA‐COD m?3 day?1 (4000 mg LCFA‐COD dm?3), while that of the two‐phase system was still satisfactory. More than 19.2% of LCFAs were degraded and 11.5% of unsaturated LCFAs were saturated in the acidogenesis of the two‐phase system, which led to the enhanced specific methane production rate and the reduced scum layer of the subsequent UASB reactor. Copyright © 2003 Society of Chemical Industry  相似文献   

3.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

4.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
The methanogenesis of black liquor from pulp and paper mill was achieved using immobilized cell technology in a laboratory‐scale two‐stage reactor system run continuously for 340 days. The optimum organic loading rate for the anaerobic treatment of black liquor was 8.0 kgm?3d?1 at which the % COD removal, biogas production and methane content were 55%, 11 dm3d?1 and 71%, respectively. Organic loading rates above 8.0 kgm?3d?1 were observed to be toxic to the methanogenic bacteria and resulted in decreased methane content, biogas and COD removal. The applicability of the system to the large‐scale processing and treatment of paper mill liquid waste is discussed. © 2001 Society of Chemical Industry  相似文献   

6.
The degradation of a non‐inhibitory substrate (sucrose) in upflow anaerobic sludge bed (UASB) reactors with different superficial flow velocites (us) was performed to generate experimental data. Additionally, a kinetic model accounting for the mass fraction of methanogens (f) and granule size distribution in UASB reactors is also proposed. At the volumetric loadings of 2.65–21.16 g COD dm?3 day?1, both the COD removal efficiency and granule size of the UASB reactors increase with increasing us. The f values determined experimentally increase from 0.13–0.24 to 0.27–0.43 if the volumetric loading is increased from 2.65 to 5.29 g COD dm?3 day?1. With a further increase in volumetric loading, the f values decline because of the accumulation of volatile fatty acids (VFAs). The predicted residual concentrations of VFAs and COD are in fairly good agreement with the experimental data. From the calculated effectiveness‐factor values, the influence of mass transfer resistance of the substrate sucrose on the overall substrate removal rate should not be neglected. From parametric sensitivity analyses together with the simulated concentration profiles, methanogenesis is the rate‐limiting step. Copyright © 2003 Society of Chemical Industry  相似文献   

7.
A simulated textile effluent (STE) was generated for use in laboratory biotreatment studies; this effluent contained one reactive azo dye, PROCION Red H‐E7B (1.5 g dm−3); sizing agent, Tissalys 150 (1.9 g dm−3); sodium chloride (1.5 g dm−3) and acetic acid (0.53 g dm−3) together with nutrients and trace elements, giving a mean COD of 3480 mg dm−3. An inclined tubular anaerobic digester (ITD) was operated for 9 months on the STE and a UASB reactor for 3 months. For a 57 day period anaerobic effluent from two reactors, a UASB and an ITD, was mixed and treated in an aerobic stage. In days 77–247 68% of the true colour of PROCION Red H‐E7B was removed by anaerobic treatment with no colour removal aerobically and up to 37% COD was removed anaerobically, with a corresponding BOD removal of 71%. For combined anaerobic and aerobic treatment a mean COD removal of 57% and BOD removal of 86% was achieved. Operation of the ITD at a 2.8 day HRT (volumetric loading rate (B v) 1.24 g COD dm−3day−1) and the UASB at a 2 day HRT (B v 1.74 g COD dm−3day−1) gave comparable COD removals but the UASB gave better true colour removal. Effluent from the combined process operating on this simulated waste still contained an average 1500 mg COD dm−3, and further treatment would be required to meet consent standards. © 1999 Society of Chemical Industry  相似文献   

8.
An upflow anaerobic sludge blanket (UASB)–anoxic–oxic system was used to achieve biochemical oxygen demand, NH4 and total suspended solids (TSS) criteria of 15, 1 and 15 mg dm?3 at 1.17 days of system hydraulic retention time during treatment of tomato‐processing waste. The incorporation of an anoxic tank was found to affect the improvement in sludge‐settling characteristics, as reflected by about 25–33% reduction in the sludge volume index, along with final effluent TSS and soluble biochemical oxygen demand concentrations of 13 and 9 mg dm?3, respectively, which met the discharge criteria. Despite incomplete denitrification, sludge settleability was very good (sludge volume index < 60 cm3 g?1) owing to reduction in volatile suspended solids/TSS ratio from 0.75 to 0.6 as a result of higher alkalinity in the UASB effluent. Also in this study, phosphorus release was observed in the anoxic tank, predominantly due to abundance of acetic acid in the UASB effluent. A phosphate release of 5.4 mg P dm?3 was observed in the anoxic tank with subsequent P uptake in the following aerobic stage. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
A study of the operational variables involved in the treatment of palm oil mill effluent (POME) was carried out. These included the acidic or alkaline nature of the POME discharged from the oil mills, the efficiency of the decay (or digestion) of the chemical oxygen demand (COD) contents of the POME, the economic benefits that could arise from the digested sludge and biogas and finally the net economic recovery abilities of the various treatment methods available. The chemical oxygen demand (COD) contents of the POME must be reduced to an acceptable level of 2000–3000 mg solids dm?3 of sludge before the latter can be used as a fertiliser material. In 10 days of operational periods various anaerobic digestion treatment methods gave COD reduction efficiencies of 76–96%, the batch pond anaerobic digestion mode gave an efficiency of 76.5%, the continuous pond modes 92.5–95.5% and the tank digester 93.8%. In all anaerobic operations the optimal pH values of the POME media were in the range 7.1–7.6 and a ratio of the volatile acids to the total alkalinity of the media (VA/TA) of 0.3 or less was found to enhance the performance of these digesters. Economic analyses carried out on all modes of treatment gave the following economic recovery abilities: the decanter/drier system gave a break-even situation of 3 years, the tank digester system, 2 years, and the single stage anaerobic pond system, 6 years. The batch pond system appeared not to give a break-even situation. Of the treatment methods examined the decanter/drier and tank digester systems were concluded to be optimal.  相似文献   

10.
Simultaneous formaldehyde and methanol biodegradation and also denitrification were studied in batch assays and in a continuous laboratory‐scale reactor. In batch assays, high formaldehyde concentrations (up to 1360 mg dm?3) were removed under anoxic conditions in the presence of methanol. It was found that formaldehyde biodegradation produced methanol and formic acid as products. The denitrification process was affected by the initial formaldehyde concentration. In the continuous reactor, the biodegradation of different concentrations of formaldehyde (1500–275 mg dm?3) and methanol (153–871 mg dm?3) took place, maintaining the organic loading rate at 0.84 g COD dm?3 d?1 (COD/N 4). However, each increase in the methanol concentration in the influent caused a decrease in the denitrification level. An adaptation period to methanol was necessary before the denitrification percentage could be recovered. In contrast with batch assays, in the continuous reactor methanol and formic acid were not detected in the effluent. Moreover, in the continuous reactor the denitrification percentages were higher and the nitrite accumulation was lower. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
The application of the pressurised activated sludge process in the secondary treatment of anaerobically digested liquor of palm oil mill effluent (POME) as influent under various physical conditions was studied. Separation of the particulates was by way of a dissolved air flotation unit. Results showed that a high efficiency in pollutant removals could be achieved and the final treated water was of good effluent quality. The high efficiency of the process was linked to the high rate of oxygen transfer at elevated pressure in the reactor. With a dissolved oxygen level of 10–14 mg dm?3 in the reactor, filamentous growth and sludge bulking were prevented. The kinetic coefficients for the process were also evaluated. It is envisaged the process could complement the anaerobic digestion in a two-stage complete treatment system for POME.  相似文献   

12.
The biomass holdup and characteristics of the anareobic fluidised bed system for methane recovery from liquid wastes was examined at COD loadings of between 5.8 to 108 kg m?3 day,?1 hydraulic retention times of between 0.45 to 8h, and feed COD concentrations of between 480 to 9000 mg dm?3. Under these operating conditions, the equilibrium biomass holdups increased with increasing COD loadings and varied from 15000 to 32000 mg VSS dm?3 The distribution of biomass holdup and biofilm thickness in the reactor was relatively uniform, because of the completely mixed conditions maintained and the continuous sloughing of biofilms induced by the effervescence caused by rising methane bubbles. This continuous biofilm sloughing process also eliminated the need for intentional sludge wasting and consequently, the resulting sludge retention time in the reactor decreased with increasing COD loadings. The ability of the anaerobic fluidized bed system to retain a high biomass holdup was clearly demonstrated. As a result this system is ideal for being employed as a high-rate system for methane recovery from liquid wastes, even at low feed COD concentrations.  相似文献   

13.
Simultaneous organic carbon and nitrogen removal was studied in a sequencing batch reactor (SBR) fed with synthetic municipal wastewater and controlled at a low dissolved oxygen (DO) level (0.8 mg dm?3). Experimental results over a long time (120 days) showed that the reactor achieved high treatment capacities (organic and nitrogen loading rates reached as high as 2.4 kg COD m?3 d?1 and 0.24 kg NH3‐N m3 d?1) and efficiencies (COD, NH3‐N and total nitrogen removal efficiencies were 95%, 99% and 75%). No filamentous bacteria were found in the sludge even though the reactor had been seeded with filamentous bulking sludge. Instead, granular sludge, which possessed high activity and good settleability, was formed. Furthermore, the sludge production rate under low DO was less than that under high DO. Significant benefits, such as low investment and less operating cost, will be obtained from the new process. © 2001 Society of Chemical Industry  相似文献   

14.
The evolution of biomass contained in a pilot-scale digester treating wastewater from a sea-food processing factory (15–45 g Chemical Oxygen Demand (COD) dm?3 and high salinity) was studied for 2 years. During this period, different effluents have been treated and several operational conditions were followed. Laboratory-scale experiments were carried out to determine the sludge methanogenic activity and the salinity adaptation of the biomass which developed in the digester. During the different periods, sludge concentration remained between 10 and 12 g Volatile Suspended Solids (VSS) dm?3, a value that seems to be characteristic for this reactor. A global Organic Loading Rate (OLR) balance showed no significant change of biomass concentration inside the reactor, although a quite important growth of biomass (11·5% of OLR fed) was observed. Methanogenic activity assays indicated a sludge with a good activity (0·5–0·75 g COD g?1 VSS day?1) in a saline medium could be obtained from a low activity sludge (0·047 g COD g?1 VSS day?1). Toxicity assays showed the importance of antagonistic effects of other cations on the toxicity exerted by sodium.  相似文献   

15.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

17.
In this work, the biodegradability of wastewater from a slaughterhouse located in Ke?an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230 mg dm?3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000 mg dm?3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry  相似文献   

18.
This paper evaluates the performance of a laboratory‐scale anaerobic fixed‐film reactor (AFFR) with arranged media treating slaughterhouse wastewater. The reactor was operated at 20 °C, its organic loading rate was increased from 1.8 to 9.2 kg COD m?3 d?1, and it had a short hydraulic residence time (5–9 h). The influence of wastewater concentrations on its performance was studied by artificially increasing the blood content of the wastewater. The efficiency of the removal of organic matter decreased from 70% to 54% as the superficial velocity increased from 0.12 to 0.97 m h?1, due mainly to distribution defects, as had been confirmed experimentally by tracer tests. The kinetics of the anaerobic processes was limited by substrate availability, even at high COD concentrations (between 700 and 1100 mg dm?3) due to a high content of slowly biodegradable and inert compounds present in the wastewater from the slaughterhouse. It was observed that a large amount of the organic matter had accumulated inside the reactor instead of being removed by methanogenic digestion. Furthermore, the fraction of organic matter held inside the reactor varied significantly in relation to the blood content of the wastewater. Copyright © 2005 Society of Chemical Industry  相似文献   

19.
The direct treatment of whey wastewater at various sludge ages (10–75 days) and high biomass concentration (above 50 g mixed liquor suspended solid (MLSS) dm?3) in a submerged membrane bioreactor (sMBR) is described. The chemical oxygen demand (COD) of raw whey varied in the range of 60 and 90 g dm?3. After feeding the sMBR with raw whey, effluent COD reduced to about 20 g dm?3. The effluent was free of suspended solids and total coliform bacteria. Total phosphorus (TP) and orthophosphate (Ortho‐P) in the influent varied between 204 and 880 mg dm?3 and between 180 and 620 mg dm?3, and effluent TP and Ortho‐P reduced to 113 and 109 mg dm?3, respectively. The ammonium and nitrate concentrations in the influent were in the ranges of 3.4 and 120 mg dm?3 and 10 and 503 mg dm?3, respectively. The effluent ammonium concentration varied between 17.6 and 198 mg dm?3 and nitrate concentrations varied between 0.9 and 69 mg dm?3. Effluent turbidity varied between 23 and 111 FAU (Formazin Attenuation Unit). The results show that sMBR is an effective pre‐treatment system for high‐strength agro‐wastewaters because of its ability to reduce the pollution load. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
The specific activity of acetotrophic methanogens and the physical behaviour of granular sludge in laboratory-scale upflow anaerobic sludge bed (UASB) reactors subjected to shock loads of lauric acid in the absence and presence of calcium were studied. In the absence of calcium, lauric acid completely inhibited acetotrophic methanogens above a threshold level of 100 mg C12:0dm?3, whereas no inhibition occurred below this threshold concentration. Addition of an equivalent amount of calcium to wastewater containing lauric acid prevented inhibition of acetotrophic methanogens at least up to 1500 mg C12:0dm?3. Addition of less than an equivalent amount of calcium apparently removed more than a stoichiometric amount of lauric acid: 50 % inhibition occurred at approximately 700 mg ‘free’ or excess C12:0dm?3. The results indicate that complete sludge wash-out from conventional UASB reactors is likely to occur within 2-8 h if the system is overloaded with an influent containing more than 100 mg C12:0dm?3. Calcium did not prevent wash-out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号