首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermomechanical and the mechanical properties of a recent series of copolyamides of octanelactam (OL) and laurolactam (LL) (nylon-8/nylon-12) were studied. The glass transition temperature (Tg) and melting point (Tm) were determined with dynamic mechanical thermal analyser, and compared to those obtained with differential scanning calorimetry and the activation energy for glass transition was calculated. The copolyamides showed a minimum for tensile strength, yield stress, stress at 100% and modulus and a maximum for elongation at break at the composition 60/40 (OL/LL) which has the lowest crystallinity. Young's modulus against % elongation showed the classification of copolyamides in two groups (rich in OL or LL, respectively).  相似文献   

2.
The permeability coefficient of a wide range (0/100–100/0 octanelactam/laurolactam [OL/LL] mol/mol) of novel copolyamides (nylon 8/nylon 12) was determined and related to the diffusion rate over a range of temperatures: Tg–30 to Tg + 40°C. An inflection in the plot of permeability vs. 1/T (K) provided an indirect indication of glass transition value and agreed satisfactory with DSC and DMTA measurements. Both uniaxially drawn and undrawn membranes were evaluated and the permeability values were correlated with the % crystallinity. The reduction in solubility, diffusivity, and permeability with increasing draw ratio was attributed to a substantial increase in % crystallinity. Finally, the effect of absorbed water on gas permeability of polyamide films was examined. In most homopolyamides and copolyamides, the higher the water absorption of films the higher the permeability values. © 1993 John Wiley & Sons, Inc.  相似文献   

3.
New and effective approaches to the synthesis of 1,3‐bis(diphenylsilyl)‐2,2,4,4‐tetraphenylcyclodisilazane‐containing polydimethylsiloxanes ( P1 and P2 ) were developed. P1 was obtained by polycondensation of cyclodisilazane lithium salt and chloroterminated polydimethylsiloxane. P2 was produced by hydrosilylation of vinyl‐terminated cyclodisilazane and hydrogen‐terminated polydimethylsiloxane. The polycondensation completed quickly at room temperature, while the hydrosilylation was facile and did not require cumbersome air‐sensitive operations. P1 and P2 were characterized by Fourier transform infrared, nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis (TGA), and isothermal gravimetric analysis (IGA). TGA revealed the outstanding thermal properties of P1 and P2 with 5% weight loss temperatures (Td5) higher than 450°C. IGA proved their better thermal stability at 450°C for 800 min, compared to polydimethyldiphenylsiloxane. Dynamic mechanical analysis showed that silicone rubbers made from cyclodisilazane‐containing polydimethylsiloxanes could have a maximum tan δ value as high as 1.13 and had good prospects for damping material applications. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

4.
Microcellular foaming of a (methyl methacrylate)–(butyl acrylate)–(methyl methacrylate) triblock copolymer was carried out by means of supercritical CO2 in a single‐step process. The experiments were performed at 40 °C using a pressure of 300 bar (30 MPa) during 24 h. The depressurization times were modified from 2 to 30 min, leading to cell sizes from 10 to 100 µm, and relative densities from 0.11 to 0.17. It was found that the key parameter to control cell size and density was depressurization time: longer depressurization times generated larger cell sizes and lower densities. The thermal conductivity of these materials was measured using the transient plane source technique, and it was found that this decreased as the density was reduced. Various models for the prediction of thermal conductivity by conduction were tested. It was found that all the models underestimated the experimental results due to a significant contribution of radiation heat flow for these materials. Copyright © 2010 Society of Chemical Industry  相似文献   

5.
The thermomechanical properties of poly(lactide) (PLA) are strongly related to its semicrystalline microstructure and morphology. Thermal annealing is a strategy to improve the crystallinity of PLA. However, the different techniques and specimen types needed for each kind of characterization could lead to misleading conclusions. In this work, annealed samples of three PLA grades with different molecular weights were studied by DSC, wide angle X‐ray scattering and polarized optical microscopy (POM) and the results are related to their thermomechanical and impact properties. Special focus is put on the POM results obtained by different approaches and the suitability of each of them to be related to the thermomechanical properties. By annealing medium molecular weight PLA specimens at 140 °C an important increase of the heat distortion temperature was obtained, which was not related to the spherulite size but to the combination of high crystallinity degree together with high α/α′ crystal type ratio. However, the impact properties of annealed PLA decreased with increase in the annealing temperature according to an increment in crystallinity and in the α/α′ crystal ratio. © 2019 Society of Chemical Industry  相似文献   

6.
Poly(urethane‐siloxane) copolymers were prepared by copolymerization of OH‐terminated polydimethylsiloxane (PDMS), which was utilized as the soft segment, as well as 4,4′‐diphenylmethane diisocyanate (MDI) and 1,4‐butanediol (1,4‐BD), which were both hard segments. These copolymers exhibited almost complete phase separation between soft and hard segments, giving rise to a very simple material structure in this investigation. The thermal behavior of the amorphous hard segment of the copolymer with 62.3% hard‐segment content was examined by differential scanning calorimetry (DSC). Both the T1 temperature and the magnitude of the T1 endotherm increased linearly with the logarithmic annealing time at an annealing temperature of 100°C. The typical enthalpy of relaxation was attributed to the physical aging of the amorphous hard segment. The T1 endotherm shifted to high temperature until it merged with the T2 endotherm as the annealing temperature increased. Following annealing at 170°C for various periods, the DSC curves presented two endothermic regions. The first endotherm assigned as T2 was the result of the enthalpy relaxation of the hard segment. The second endothermic peak (T3) was caused by the hard‐segment crystal. The exothermic curves at an annealing temperature of above 150°C exhibited an exotherm caused by the T3 microcrystalline growth. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:5174–5183, 2006  相似文献   

7.
D. Tyagi  I. Yílgr  J.E. McGrath  G.L. Wilkes 《Polymer》1984,25(12):1807-1816
The structure-property behaviour of new siloxane-urea containing segmented copolymers has been investigated. Amino-propyl terminated poly(dimethylsiloxane) oligomers of from 900–3660 Mn were reacted with various diisocynates to form segmented copolymers with urea linkages. The length of the hard segments in these copolymers corresponds approximately to the length of the diisocynate unit employed. A number of mechanical and thermal properties were investigated for these phase separated materials. It was found that the performance of these copolymers was effected by varying the hard segment type and/or content and that high strength necessitates a microphase texture. The two phase nature of these copolymers was verified by dynamic mechanical, thermal and SAXS studies. The phase separation was found to occur in these copolymers even with 6% hard segment by weight. In conclusion, these materials displayed a behaviour similar to the segmented polyurethanes and were found to be superior to the unfilled silicone elastomers.  相似文献   

8.
Dimer acid (DA)‐based nylon 636/nylon 66 copolymers were synthesized by in situ polymerization. The effects of incorporating nylon 66 on the mechanical and thermal properties were characterized by means of intrinsic viscosity determination, attenuated total reflection (ATR)–Fourier transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), differential scanning calorimetry, thermogravimetric analysis, and mechanical testing. The results show that the intrinsic viscosity of the copolymers ranged from 1.0 to 2.1 dL/g, depending on the content of nylon 66. The incorporation of nylon 66 into DA‐based nylon 636 had no significant effect on the values of the glass‐transition temperature, melting temperature, temperature at 50% weight loss, or temperature at the maximum rate of decomposition, but the crystallization temperature, crystallinity degree, and extrapolated onset temperature increased. ATR–FTIR spectroscopy and XRD demonstrated that with increasing nylon 66 mass, the content of α‐ and β‐crystal forms would increase accordingly. The mechanical test data revealed that with increasing nylon 66 concentration, the tensile strength of the copolymers increased, and the flexural strength and flexural modulus first increased and then decreased. However, the notched Izod impact strength decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 39845.  相似文献   

9.
The thermal properties and crystalline structure of the amphiphilic graft copolymers CR-g-PEG600, CR-g-PEG2000, and CR-g-PEG6000 using chloroprene rubber (CR) as the hydrophobic backbone and poly (ethylene glycol) (PEG) with different molecular weights as the hydrophilic side chains were studied by DSC and WAXD. The results showed that a distinct phase-separated structure existed in CR-g-PEGs because of the incompatibility between the backbone segments and the side-chain segments. For all the polymers studied, Tm2, which is the melting point of PEG crystalline domains in CR-g-PEG, decreased compared to that of the corresponding pure PEG and varied little with PEG content. For CR-g-PEG600 and CR-g-PEG2000, Tm1, which is the melting point of the CR crystalline domains, increased with increasing PEG content when the PEG content was not high enough, and at constant PEG content, the longer were the PEG side chains the higher was the Tm1. The crystallite size Lo11 of CR in CR-g-PEGs increased compared to that of the pure CR and decreased with increasing PEG content. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 64: 2441–2447, 1997  相似文献   

10.
The main scope of this comprehensive study is to investigate the effects of poly(p-benzophenoneoxycarbonylphenyl acrylate), poly(BPOCPA), which presenting as only graft units or both graft and ungrafted units in the matrix, on the fundamental features of isotactic polypropylene (IPP). The graft copolymerization of BPOCPA onto IPP was performed with the aid of bulk melt polymerization at varying monomer content levels ranging from 5% to 40%. The thermal behavior, crystal quality, mechanical performance, and surface morphology of the samples were investigated by means of differential scanning calorimeter, X-ray diffractometer (XRD), universal mechanical test, and scanning electron microscope (SEM) techniques. Thermal analyses depicted that there existed the noteworthy enhancements in both crystalline melting temperatures and percent crystallinities of matrix polymers. Furthermore, according to XRD results, a and b parameters increased significantly at low percentages of the graft units, while the parameter c decreased in all products in consistence with the content. As for the mechanical characterization, the grafting led to remarkable improvements in modulus, tensile and impact strength of the products. SEM micrographs indicated that the samples were completely homogeneous without any phase separation and the products exhibited brittle nature with some ductility.  相似文献   

11.
Poly(L ‐lactide‐co‐ε‐caprolactone)‐b‐poly(L ‐lactide) [P(LL‐co‐CL)‐b‐PLL] diblock copolyesters were synthesized in a two‐step process with 1‐dodecanol (DDC) and stannous octoate as the initiating system. In the first‐step reaction, a 50:50 mol % amorphous poly(L ‐lactide‐co‐ε‐caprolactone) [P(LL‐co‐CL)] copolyester was synthesized via the bulk copolymerization of L ‐lactide and ε‐caprolactone, which was followed by the polymerization of the PLL crystalline block at the end chain in the second‐step reaction. The yielded copolyesters were characterized with dilute‐solution viscometry, gel permeation chromatography, 1H‐ and 13C‐NMR, and differential scanning calorimetry methods. The molecular weights of the P(LL‐co‐CL) copolyesters from the first‐step reaction were controlled by the DDC concentrations, whereas in the second‐step reaction, the molecular weights of the P(LL‐co‐CL)‐b‐PLL diblock copolyesters depended on the starting P(LL‐co‐CL) copolyester molecular weights and L ‐lactide/prepolymer molar ratios. The starting P(LL‐co‐CL) copolyester molecular weights and PLL block lengths seemed to be the main factors affecting specific thermal properties, including the melting temperature (Tm), heat of melting (ΔHm), crystallizing temperature (Tc), and heat of crystallizing (ΔHc), of the final P(LL‐co‐CL)‐b‐PLL diblock copolyester products. Tm, ΔHm, Tc, and ΔHc increased when the PLL block lengths increased. However, these thermal properties of the diblock copolyesters also decreased when the P(LL‐co‐CL) block lengths increased. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

12.
Poly(4‐vinylpyridine)s (P4VPs) fully and partially quaternized with dialkyloxyterphenyl groups were synthesized and characterized. These new polymers developed both liquid‐crystalline (LC) properties and a light emission (luminescence) in the blue region. The mesomorphic behavior of the polymers was initially characterized by differential scanning calorimetry and polarizing optical microscopy and was further corroborated by X‐ray diffraction analyses. The X‐ray diffraction patterns showed in the low‐angles region several equidistant diffraction peaks (d001, d002, d003, …) and in the wide‐angles region a broad peak typical of nonordered mesophases. From d001 and the length of the monomers, we deduced that the molecular arrangement in the mesophase corresponded to a double‐layered stacking of molecules with mesogens tilted with respect to the smectic plane and the backbones sandwiched between. In this arrangement, the different parts of mesogens are segregated from one another in layered domains. The longer smectic periods observed for copolymers indicated that the nonsubstituted pyridine cycles were sandwiched between two smectic layers. The emission spectra of these polymers were characterized by a broad signal centered at 365 nm. The combination of LC properties with luminescence in the polymers is interesting for the preparation of thin films with aligned emitters, particularly for linearly polarized light emission. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

13.
Polyimide‐g‐nylon 6 copolymers were prepared by the polymerization of phenyl 3,5‐diaminobenzoate with several diamines and dianhydrides with a one‐step method. The polyimides containing pendant ester moieties were then used as activators for the anionic polymerization of molten ε‐caprolactam. Nylon 6‐b‐polyimide‐b‐nylon 6 copolymers were prepared by the use of phenyl 4‐aminobenzoate as an end‐capping agent in the preparation of a series of imide oligomers. The oligomers were then used to activate the anionic polymerization of ε‐caprolactam. In both the graft and copolymer syntheses, the phenyl ester groups reacted quickly with caprolactam anions at 120°C to generate N‐acyllactam moieties, which activated the anionic polymerization. All the block copolymers had higher moduli and tensile strengths than those of nylon 6. However, their elongations at break were much lower. The graft copolymers based on 2,2′‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]propane dianhydride and 2,2′‐bis[4‐(4‐aminophenoxy)phenyl]propane displayed elongations comparable to that of nylon 6 and the highest moduli and tensile strengths of all the copolymers. The thermal stability, moisture resistance, and impact strength were dramatically increased by the incorporation of only 5 wt % polyimide into both the graft and block copolymers. The graft and block copolymers also exhibited improved melt processability. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 300–308, 2006  相似文献   

14.
The effects of annealing time and molecular weight on the strong melt memory effect observed in random ethylene 1‐alkene copolymers are analyzed in a series of model ethylene 1‐butene copolymers with 2.2 mol% branches. Melt memory is associated with molten clusters of ethylene sequences from the initial crystals that remain in close proximity and are unable to diffuse quickly to the randomized melt state, thus increasing the recrystallization rate. Melt memory persists even for greater than 1000 min annealing indicating a long‐lived nature of the clusters that only fully dissolve at melt temperatures above a critical value (>160 °C). Below the critical melt temperature, molecular weight and annealing temperature have a strong influence on the slow kinetics of melt memory. For the copolymers analyzed, slow dissolution of clusters is experimentally observed only for Mw < 50 000 g mol?1. More stable clusters that survive higher annealing temperatures display slower dissolution rates than clusters remaining at lower temperatures. The threshold crystallinity level to enable melt memory (Xc,threshold) decreases with increasing molecular weight and decreasing annealing temperature similarly to the variation of the chain diffusivity in the melt. The process leading to melt memory is thermally activated as the variation of Xc,threshold with temperature follows Arrhenius behavior with high activation energy (ca 108 kJ mol?1) that is independent of molecular weight. © 2018 Society of Chemical Industry  相似文献   

15.
Poly(imide siloxane), block and blend copolymer, were synthesized using different methods to explore the influence of siloxane chains. The flexible siloxane chains enrichment on surface of copolymer, enhance hydrophobic and adhesive with copper foil. It also improves light transmittance of polyimide film in the visible light region. The effect of different preparation methods on the aggregation in polymers and on polymer properties, especially adhesion and water absorptivity, are also discussed. The imidization temperature and synthesis method (blend and block) during the reaction has a significant effect on the properties of the product, especially thermal properties (T g values are 207 °C for block and 180 °C for blend) and mechanical properties (elongation of 130% for block and 50% for blend). The bonding strength of polymer films used as hot melt adhesive was also tested. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 48148.  相似文献   

16.
In order to solve the poor nucleation ability and slow crystallization rate of polyethylene terephthalate (PET), we propose a new strategy to prepare PET with self-nucleation ability based on the mechanism of mutual attraction of ions. In this study, a hydroxyl-terminated sulfonate monomer, sulfonated 1,4-butanediol (SBDO) without rigid structure was synthesized as nucleating agent functionalized PET third monomer, and then PET ionomers (PETi) were prepared through melt polycondensation with different contents of SBDO. The half-crystallization time of PETi was sharply decreased in contrast with pure PET and the crystallization temperature was significantly increased from 182.6°C to 210.8°C for PETi1. Due to the high nucleation efficiency of SBDO, the crystallization temperature of PET was significantly increased, avoiding the excessive addition of traditional nucleating agents to deteriorate the mechanical properties of PET. The increased nucleation efficiency was contributed to the aggregation of SBDO induced by the ionic interactions.  相似文献   

17.
We synthesized a series of poly(acrylonitrile‐co‐allyl glycidyl ether)‐graft‐methoxypoly(ethylene glycol) (PAA‐g‐MPEG) copolymers as novel polymeric solid–solid phase‐change materials by grafting methoxypoly(ethylene glycol) (MPEG) to the main chain of poly(acrylonitrile‐co‐allyl glycidyl ether) (PAA). PAA was the skeleton, and MPEG was a functional side chain, which stored and released heat during its phase‐transition process. Fourier transform infrared spectroscopy and 1H‐NMR spectroscopy analysis were performed to investigate the chemical structures. The crystalline morphology and crystal structures were also measured with polarized optical microscopy and X‐ray diffraction. Moreover, the thermal‐energy‐storage properties, thermal stability, and thermal reliability of the PAA‐g‐MPEG copolymers were characterized by differential scanning calorimetry and thermogravimetric analysis (TGA) methods. These analysis results indicate that the MPEG chains were successfully grafted onto PAA, and we found that the PAA‐g‐MPEG copolymers had typical solid–solid phase‐transition temperatures in the range 11–54 °C and high latent heat enthalpies between 44 and 85 J/g. In addition, the as‐prepared PAA‐g‐MPEG copolymers showed reusability and thermal reliability, as shown by the thermal cycle testing and TGA curves. Therefore, the synthesized PAA‐g‐MPEG copolymers have considerable potential for thermal energy storage. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46641.  相似文献   

18.
The biodegradation of poly(vinyl alcohol) and poly(vinyl alcohol)‐graft‐lactic acid copolymers was analyzed, using Trichotecium roseum fungus. The samples were examined during biodegradation at different periods of exposure. Structural modifications of the biodegraded samples were investigated by Fourier transform infrared‐attenuated total reflectance spectroscopy, and the surface morphology was investigated by scanning electron microscopy. The static light scattering results concluded that the weight average molecular mass (Mw) of the copolymers increased after biodegradation, because the fractions with low molecular weight of the copolymers were destroyed. The thermal behavior and stability of the samples before and after the biodegradation period were investigated by differential scanning calorimetry (DSC) and thermogravimetric analyses. The thermogravimetric analyses and their derivatives (TG‐DTG) showed that the thermal stability of the biodegraded samples was more raised comparatively to the unbiodegraded ones. The DSC results demonstrated that biodegradation took place in the amorphous domains of the investigated polymer samples and the crystallinity degree increased after 24 biodegradation days. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41777.  相似文献   

19.
The effects of both the degree of grafting and γ irradiation on the thermal stability and structural characteristic of polypropylene‐graft‐polyvinylpyrrolidone and polypropylene‐graft‐polyvinylpyrrolidone modified with α‐cyano‐δ‐(2‐thienyl) crotononitrile were investigated. The employed techniques were thermogravimetric analysis, differential thermogravimetry, and X‐ray diffraction. The thermal stability of various polymeric substrates was investigated through the determination of the degradation temperature and activation energy of degradation. The effects of different parameters on the structural characteristics of different films were investigated through the determination of possible changes in the degree of ordering of the polymeric substrates. The results revealed that the thermal stability of the trunk polymer, grafted polymer, and polymer modified by α‐cyano‐δ‐(2‐thienyl) crotononitrile increased progressively with an increasing degree of grafting. The increase was, however, more pronounced for the sample undergoing the lowest degree of grafting. The activation energy of the thermal degradation process remained almost unchanged, and this indicated that the degradation processes of the different films followed almost the same mechanism. The γ irradiation at a dose of 60 kGy of the sulfur‐treated polymeric films [i.e., the polymeric films treated with α‐cyano‐δ‐(2‐thienyl) crotononitrile] reduced their thermal stability. This conclusion was reached by the consideration of the changes observed in the pre‐exponential factor of the Arrhenius equation due to different chemical and γ‐irradiation treatments. The degree of ordering, evidenced by X‐ray diffraction measurements of the trunk polymer, grafted polymer, and modified polymer, suffered a significant drop. This drop was much more pronounced for the sulfur‐containing polymeric materials. The observed drop in the degree of ordering of the polymeric substrates was taken as a measure of the structure collapse due to a certain treatment (degree of grafting and sulfur inclusion). The γ irradiation of the sulfur‐containing polymeric materials greatly increased their degree of ordering, which reached a value greater than that measured for the trunk polymer. Therefore, it was concluded that the thermal stability increased as the degree of ordering decreased. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 506–515, 2006  相似文献   

20.
Several poly(imide siloxane) block copolymers with the same bis(γ‐aminopropyl)polydimethylsiloxane (APPS) content were prepared. The polyimide hard block was composed of 4,4′‐oxydianiline and 3,3′,4,4′‐diphenylthioether dianhydride (TDPA), and the polysiloxane soft block was composed of APPS and TDPA. The length of polysiloxane soft block increased simultaneously with increasing the length of polyimide hard block. For better understanding the structure–property relations, the corresponding randomly segmented poly(imide siloxane) copolymer was also prepared. These copolymers were characterized by FT‐IR, 1H‐NMR, dynamic mechanical thermal analysis, thermogravimetric analysis, polarized optical microscope, rheology and tensile test. Two glass transition temperatures (Tg) were found in the randomly segmented copolymer, while three Tgs were found in the block copolymers. In addition, the Tgs, storage modulus, tensile modulus, solubility, elastic recovery, surface morphology and complex viscosity of the copolymers varied regularly with increasing the lengths of both blocks. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号