首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
In order to improve oil and water repellency, silicone-containing block copolymers, composed of methylmethacrylate (MMA), glycidylmethacrylate (GMA), and polydimethylsiloxanemethacrylate (SMA), were blended in an epoxy resin. It was expected that the low surface energy dimethylsiloxane segments would adsorb and orient at the exterior of the resin to make a thin surface phase and the glycidyl groups would mesh with the epoxy resin by primary bonding. The techniques of X-ray photoelectron spectroscopy (ESCA), dynamic contact angle (DCA) and peel strength measurements of pressure sensitive adhesives were used to characterize the modified epoxy resin surface phases. The amount of Si2p obtained via angular dependent ESCA investigation in the near surface region of the modified resin increased with decreasing sampling depth. With an increase in modifier content, both the amount of Si2p and O1s also increased. Both advancing and receding contact angles for an aluminum plate coated with modified resin, measured by dipping into and out of water, increased with the addition of these modifiers. The peel strength of a pressure sensitive adhesive tape affixed to the modified epoxy resin decreased dramatically with increasing modifier content. It was found that these copolymers were good surface modifiers to improve oil and water repellency and that they acted as release agents.  相似文献   

2.
In order to improve oil and water repellency, silicone-containing block copolymers, composed of methylmethacrylate (MMA), glycidylmethacrylate (GMA), and polydimethylsiloxanemethacrylate (SMA), were blended in an epoxy resin. It was expected that the low surface energy dimethylsiloxane segments would adsorb and orient at the exterior of the resin to make a thin surface phase and the glycidyl groups would mesh with the epoxy resin by primary bonding. The techniques of X-ray photoelectron spectroscopy (ESCA), dynamic contact angle (DCA) and peel strength measurements of pressure sensitive adhesives were used to characterize the modified epoxy resin surface phases. The amount of Si2p obtained via angular dependent ESCA investigation in the near surface region of the modified resin increased with decreasing sampling depth. With an increase in modifier content, both the amount of Si2p and O1s also increased. Both advancing and receding contact angles for an aluminum plate coated with modified resin, measured by dipping into and out of water, increased with the addition of these modifiers. The peel strength of a pressure sensitive adhesive tape affixed to the modified epoxy resin decreased dramatically with increasing modifier content. It was found that these copolymers were good surface modifiers to improve oil and water repellency and that they acted as release agents.  相似文献   

3.
The morphology and physical properties of dicyandiamide (DICY)-cured epoxy resin modified with acrylic particles were studied. We used one homopolymer of methyl methacrylate (MMA) and three copolymers of MMA and glycidyl methacrylate (GMA) [P(MMA-GMA)] containing different amounts of GMA as the acrylic particles. When a mixture of the acrylic particles and the epoxy resin was heated, the particles were swollen with the epoxy resin and thus a soft gel with no fluidity was formed. Further heating to the reaction temperature of the DICY cured the soft gel. The structure of the acrylic particles strongly affected the physical properties of the soft gel and the cured epoxy resin. The cured system containing 5 mol% of GMA showed the best physical properties (impact strength and adhesive property), but there was a tendency for the physical properties to decline with a higher GMA content. We have determined that the GMA content of the acrylic particles affects the concentration of network chains in the system.  相似文献   

4.
Modification of argon plasma-pretreated Si(100) surfaces via plasma polymerization of glycidyl methacrylate(GMA), followed by reactive coupling of the epoxide groups of the plasma deposited GMA chains with aniline, and finally by oxidative graft polymerization of aniline was carried out. An alternative approach involved the modification of the argon plasma-pretreated Si(100) surfaces via plasma polymerization of glycidyl methacrylate(GMA), followed by direct oxidative graft polymerization of aniline and thermal curing. The compositions and chemical states of the modified Si surfaces were characterized by X-ray photoelectron spectroscopy (XPS). The two methods of surface modification of the Si(100) surfaces produced similar results. The protonation-deprotonation behavior, the interconvertible intrinsic redox states, and the metal reduction behavior (the electroless plating of Pd from the Pd(II) ion solution) of the grafted polyaniline (PANI) chains on the Si(100) surface were grossly similar to those of the PANI homopolymer. The coupling of PANI to the covalently tethered GMA chains on the Si(100) surface was suggested by the cohesive failure inside the epoxy adhesive that was applied to the modified Si surface in an attempt to peel off the PANI layer from the GMA plasma-polymerized Si (GMA-pp-Si) substrate.  相似文献   

5.
Acrylate‐functionalized copolymers were synthesized by the modification of poly(butyl acrylate‐co‐glycidyl methacrylate) (BA/GMA) and poly(butyl acrylate‐co‐methyl methacrylate‐co‐glycidyl methacrylate). 13C‐NMR analyses showed that no glycidyl methacrylate block longer than three monomer units was formed in the BA/GMA copolymer if the glycidyl methacrylate concentration was kept below 20 mol %. We chemically modified the copolymers by reacting the epoxy group with acrylic acid to yield polymers with various glass‐transition temperatures and functionalities. We studied the crosslinking reactions of these copolymers by differential scanning calorimetry to point out the effect of chain functionality on double‐bond reactivity. Films formed from acrylic acrylate copolymer precursors were finally cured under ultraviolet radiation. Network heterogeneities such as pendant chains and highly crosslinked microgel‐like regions greatly influenced the network structure and, therefore, its viscoelastic properties. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 753–763, 2002  相似文献   

6.
利用引发剂连续再生催化剂原子转移自由基聚合(ICAR-ATRP)合成了一系列结构可控的含有含氟丙烯酸酯和甲基丙烯酸缩水甘油酯(GMA)的两嵌段丙烯酸酯聚合物,即聚(甲基丙烯酸丁酯-co-甲基丙烯酸缩水甘油酯)-b-聚甲基丙烯酸十二氟庚酯[P(BMA-co-GMA)-b-PDFHMA,BGF]。将嵌段聚合物与环氧树脂混合制备自分层涂料。傅里叶变换红外光谱(FT-IR)和扫描电子显微镜-能谱分析仪(SEM-EDS)测试表明,当两嵌段聚合物中P(BMA)-co-GMA与PDFHMA的相对分子质量分别为5 300和2 300、GMA结构单元相对分子质量占总相对分子质量的20%,且BGF用量为10%时,漆膜固化过程中含氟嵌段聚合物可以部分迁移到漆膜表面,共混漆膜氟元素自迁移效果较好,表层氟含量达到20%以上,且增加含氟树脂中GMA含量时漆膜氟元素迁移效果下降;耐紫外老化性测试结果表明,含氟树脂的加入使得漆膜的光泽保持率更好,耐黄变性变化不大;水接触角和耐盐雾性测试结果表明,相对纯环氧树脂,加入10%含氟嵌段聚合物使漆膜的水接触角均提高到了100°以上,自分层漆膜的耐盐雾性都有一定提高,可以有效防止漆膜的起泡。嵌段聚合物的加入量低于4%时,对漆膜的基本力学性能没有影响,但光泽有一定下降。  相似文献   

7.
An epoxy/PTFE composite was prepared by curing the epoxy resin on the surface-modified PTFE film. Surface modification of PTFE films was carried out via argon plasma pretreatment, followed by UV-induced graft copolymerization with glycidyl methacrylate (GMA). The film composite achieved a 90°-peel adhesion strength above 15 N/cm. The strong adhesion of the epoxy resin to PTFE arose from the fact that the epoxide groups of the grafted GMA chains were cured into the epoxy resin matrix to give rise to a highly crosslinked interphase, as well as the fact that the GMA chains were covalently tethered on the PTFE film surface. Delamination of the composite resulted in cohesive failure inside the PTFE film and gave rise to an epoxy resin surface with a covalently-adhered fluoropolymer layer. The surface composition and microstructures of the GMA graft-copolymerized PTFE (GMA-g-PTFE) films and those of the delaminated epoxy resin and PTFE film surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and scanning electron microscope (SEM) measurements. The delaminated epoxy resin surfaces were highly hydrophobic, having water contact angles of about 140°C. The value is higher than that of the pristine PTFE film surface of about 110°. The epoxy resin samples obtained from delamination of the epoxy/GMA-g-PTFE composites showed a lower rate of moisture sorption. All the fluorinated epoxy resin surfaces exhibited rather good stability when subjected to the Level 1 hydrothermal reliability tests.  相似文献   

8.
An epoxy/PTFE composite was prepared by curing the epoxy resin on the surface-modified PTFE film. Surface modification of PTFE films was carried out via argon plasma pretreatment, followed by UV-induced graft copolymerization with glycidyl methacrylate (GMA). The film composite achieved a 90°-peel adhesion strength above 15 N/cm. The strong adhesion of the epoxy resin to PTFE arose from the fact that the epoxide groups of the grafted GMA chains were cured into the epoxy resin matrix to give rise to a highly crosslinked interphase, as well as the fact that the GMA chains were covalently tethered on the PTFE film surface. Delamination of the composite resulted in cohesive failure inside the PTFE film and gave rise to an epoxy resin surface with a covalently-adhered fluoropolymer layer. The surface composition and microstructures of the GMA graft-copolymerized PTFE (GMA-g-PTFE) films and those of the delaminated epoxy resin and PTFE film surfaces were characterized by X-ray photoelectron spectroscopy (XPS), water contact angle and scanning electron microscope (SEM) measurements. The delaminated epoxy resin surfaces were highly hydrophobic, having water contact angles of about 140°C. The value is higher than that of the pristine PTFE film surface of about 110°. The epoxy resin samples obtained from delamination of the epoxy/GMA-g-PTFE composites showed a lower rate of moisture sorption. All the fluorinated epoxy resin surfaces exhibited rather good stability when subjected to the Level 1 hydrothermal reliability tests.  相似文献   

9.
采用甲基丙烯酸甲酯(MMA)、甲基丙烯酸缩水甘油酯(GMA)、丙烯酸六氟丁酯(F6BA),通过溶液聚合法制备了含氟环氧丙烯酸酯树脂P(MMA/GMA/F6BA)。采用DSC研究了以己二酸为固化剂的固化反应,确定固化反应动力学方程和固化反应级数;采用FTIR跟踪固化反应过程,确定固化反应时间。  相似文献   

10.
Poly[(n‐butyl acrylate)‐block‐poly(methyl methacrylate)‐co‐(glycidyl methacrylate)] (BMG) diblock copolymers incorporating an epoxy‐reactive functionality in one block have been synthesized and used as modifiers for the model epoxy resin E‐51 cured with 4,4′‐diaminodiphenyl methane (DDM). The properties and morphologies of the modified epoxy thermosets were investigated by dynamic mechanical analysis (DMA), impact testing and scanning electron microscopy (SEM). The results reveal that addition of the block copolymers leaves the glass transition temperatures of the blends relatively unchanged, with small decreases in the storage moduli at room temperature. The toughening effect is dependent on the chemical structures of the block copolymers and an increase in the impact strength by a factor of two was obtained by the addition of ‘relatively symmetrical’ block copolymers. Moreover, the impact test results are consistent with the morphologies of the fracture surfaces as evidenced by SEM. Copyright © 2005 Society of Chemical Industry  相似文献   

11.
The well dispersed multiwalled carbon nanotube (MWCNT)/epoxy composites were prepared by functionalization of the MWCNT surfaces with glycidyl methacrylate (GMA). The morphology and thermal properties of the epoxy nanocomposites were investigated and compared with the surface characteristics of MWCNTs. GMA‐grafted MWCNTs improved the dispersion and interfacial adhesion in epoxy resin, and enhanced the network structure. The storage modulus of 3 phr GMA‐MWCNTs/epoxy composites at 50°C increased from 0.32 GPa to 2.87 GPa (enhanced by 799%) and the increased tanδ from 50.5°C to 61.7°C (increased by 11.2°C) comparing with neat epoxy resin, respectively. Furthermore, the thermal conductivity of 3 phr GMA‐MWCNTs/epoxy composite is increased by 183%, from 0.2042 W/mK (neat epoxy) to 0.5781 W/mK. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
In this study, a UV curable resin based on palm oil was prepared by modifying palm oil with glycerol and glycidyl methacrylate (GMA). First, monoglyceride (MG) was prepared from a mixture of palm oil and glycerol at a ratio of 1 : 2 based on equivalent basis. The MG was treated with GMA to introduce unsaturated groups to MG chain via etherification between epoxy group (from GMA) and hydroxyl group (from MG). The amount of catalyst needed, reaction temperature, and time for this chemical modification were determined. The completion of reaction between GMA and monoglyceride was measured using Fourier transform infrared (FTIR) spectroscopy by monitoring the disappearance of the epoxy group in FTIR spectrum. An increment at peak 1630 cm?1 in FTIR spectrum was observed when more GMA was used in the chemical modification. Viscosity test and gel permeation chromatography analysis were carried out to characterize the resin produced. The resin was then cured using UV radiation and the properties of the cured resin were measured. From the results, the gel content of the cured resin was more than 97%. The hardness of the MG‐GMA film was influenced by the amount of GMA used. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
Surface modifications of Ar plasma-pretreated poly(tetrafluoroethylene) (PTFE) film were carried out via near-UV light-induced graft copolymerization with glycidyl methacrylate (GMA). The structure and chemical composition of the copolymer surface and interface were studied by angle-resolved X-ray photoelectron spectroscopy (XPS). For PTFE substrate with a substantial amount of grafting, the grafted GMA polymer penetrates or becomes partially submerged beneath a thin surface layer of dense substrate chains to form a stratified surface microstructure. The concentration of the surface-grafted GMA polymer increases with the plasma pretreatment time, the near-UV light illumination time, and the monomer concentration. The GMA graft copolymerized PTFE surfaces adhere strongly to one another when brought into direct contact and cured (i) in the presence of a diamine alone or (ii) in the presence of an epoxy adhesive (epoxy resin plus diamine curing agent). In the presence of diamine alone, failure occurs in the interfacial region. For epoxy adhesive-promoted adhesion, the failure mode is cohesive, i.e. it takes place in the bulk of one of the delaminated PTFE films. The lap shear strengths in both cases increase with the amount of surface-grafted epoxide polymer. The development of the adhesion strength depends on the concentration of the surface graft, the microstructure of the graft copolymerized PTFE surface, the interfacial reactions, and the nature of the bonding agent.  相似文献   

14.
Thermal graft polymerization-induced lamination of surface-modified copper foil to surface-modified poly(tetrafluoroethylene) (PTFE) film was achieved in the presence of an epoxy resin adhesive and glycidyl methacrylate (GMA) monomer, or in the presence of GMA and hexamethylenediamine (HEDA). The copper foil surfaces were pretreated with an organosilane coupling agent (SCA), such as (3-mercaptopropyl)trimethoxysiane, 3-(trimethoxysilyl)propyl methacrylate, or N1-[3-(trimethoxysilyl)propyl]diethylene-triamine. The silanized copper foils were subjected to brief Ar plasma treatment and subsequently to UV-induced graft polymerization with GMA (the Cu-SCA-g-GMA surface). Surface modification of PTFE film included Ar plasma treatment alone, or Ar plasma pretreatment followed by UV-induced graft polymerization with GMA (the GMA-g-PTFE surface). The modified surfaces and interfaces were characterized by X-ray photoelectron spectroscopy (XPS) and water contact angle measurements. The Cu-SCA-g-GMA/epoxy resin-GMA/PTFE or Cu-SCA-g-GMA/GMA–HEDA/GMA-g-PTFE laminates exhibited T-peel adhesion strengths in excess of 9 N/cm and the joints delaminated by cohesive failure inside the bulk of the PTFE film. The strong adhesion in these Cu foil-PTFE laminates is attributable to the fact that the GMA chains are covalently tethered on both the PTFE and the silanized Cu surfaces, as well the fact that these grafted GMA chains are covalently incorporated into the highly crosslinked network structure of the adhesive at the interphase.  相似文献   

15.
Cationic UV‐curable methacrylate copolymers consisting of glycidyl methacrylate, iso‐butyl methacrylate, and 2,2,3,4,4,4‐hexafluorobutyl methacrylate were synthesized, and their structures were characterized by FTIR, 1H NMR, and 13C NMR. A series of UV‐cured composite films based on the synthesized copolymers and an alicyclic epoxy resin, 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexanecarboxylate (CE) were obtained through photopolymerization. Their surface contact angle, chemical ability, gloss, light transmittance, thermal behavior, micromorphology, and shrinkage were investigated. Results indicated that these cured resins showed excellent gloss and visible light transmittance; after the combination of the copolymers and CE, and in the presence of fluorine in the curing systems they exhibited relatively fine water resistance, chemical, and thermal stability. It was observed that these copolymers could decrease the degree of the volume shrinkage to CE. The UV‐curable materials may have promising applications in optical fiber coatings, flip chip and Organic Light‐Emitting Diode (OLED) packing. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
含氟单体对环氧丙烯酸酯树脂性能的影响   总被引:4,自引:0,他引:4       下载免费PDF全文
钱金明  史铁钧  赵良燕 《化工学报》2009,60(5):1300-1305
以甲基丙烯酸甲酯(MMA)、甲基丙烯酸缩水甘油酯(GMA)、丙烯酸六氟丁酯(F6BA)为原料,采用溶液聚合法制备了含氟环氧丙烯酸酯共聚物。采用FT-IR、13C NMR 、DSC和GPC等手段对共聚物的化学结构、玻璃化转变温度和分子量及其分布的分析表明:产物是含氟类环氧丙烯酸酯共聚物,玻璃化转变温度随含氟单体用量的增大而降低,分子量分布较窄,分布指数在1.35~1.65之间。采用JC2000C1静滴接触角/界面张力仪考察了共聚物膜的表面能,发现随着共聚物中氟单体含量的增加,表面能下降,当氟单体含量达到20%时,其表面能降低到38.27 mJ·m-2,吸水率随氟单体用量的增大从18.72%下降至4.55%,耐酸碱性能明显提高,涂膜铅笔硬度从3H下降至2H。  相似文献   

17.
以丙烯酸正丁酯(BA)、甲基丙烯酸甲酯(MMA)及甲基丙烯酸缩水甘油酯(GMA)为单体通过悬浮聚合反应合成了共聚物P(MMA-BA-GMA)简称(PMBG),采用傅里叶红外光谱仪、核磁共振波谱仪、凝胶渗透色谱仪对PMBG的结构与组成进行了表征。采用合成的PMBG对环氧树脂(DER663)/固化剂(HTP-305)体系进行增韧改性,研究了PMBG含量对体系力学性能和热性能的影响,并通过扫描电镜(SEM)对固化物断面的微观结构进行了分析。结果表明:PMBG改性后的环氧树脂冲击强度及断裂伸长率提高,当PMBG的质量分数为5%时,冲击强度显著提高,增韧改性效果最好,并且对体系的玻璃化转变温度(Tg)影响不大;共聚物在体系固化时发生微相分离,因而提高了环氧树脂的韧性。  相似文献   

18.
采用溶液聚合法合成带环氧基团的丙烯酸树脂,并对其结构进行了表征。研究了甲基丙烯酸缩水甘油酯(GMA)用量、引发剂类型对丙烯酸树脂及涂料性能的影响。通过选用夺氢能力较弱的引发剂以及聚合工艺的优化,合成出高流平、高耐候、耐腐蚀性佳的透明粉末涂料用丙烯酸树脂。  相似文献   

19.
Reactive and non-reactive diblock copolymers based on polyethylene oxide (PEO) and a poly(glycidyl methacrylate) (PGMA, reactive) or polystyrene (non-reactive) block, respectively, are prepared via ATRP and those are incorporated into a cycloaliphatic epoxy matrix. Crosslinking of the matrix is then performed by cationic UV curing, producing modified thermosets. 1H NMR and SEC measurements are carried out and used to analyze the composition, the molar mass and dispersity of the prepared block copolymers. The viscoelastic properties and morphology of the modified epoxy are determined using DMTA and FESEM, respectively. The addition of 4 and 8 wt% of the reactive PEO-b-PGMA block copolymer into epoxy resin has only minor effects on the glass transition temperature, Tg. The reactive homopolymer PGMA significantly increases and the non-reactive block copolymer PEO-b-PS slightly decreases the glass transition temperature of the epoxy matrix. The non-reactive block copolymer PEO-b-PS causes a little decrease in Tg values. The measurement of the critical stress factor, KIC, shows that the fracture toughness of the composite materials is enhanced by inclusion of the non-reactive block copolymer. In contrary, the reactive block copolymer has negative effect on the fracture toughness especially in case of short PEO block. FESEM micrographs studies on the fracture surfaces sustain the microphase separation and the increase in surface roughness in the toughened samples, indicating more energy was dissipated.  相似文献   

20.
将带有环氧基的功能性单体甲基丙烯酸缩水甘油酯(GMA)接枝聚合在微米级氧化铝颗粒表面,制备了接枝微粒PGMA/(Al)_2O_3。考察了各种因素对接枝率的影响;利用红外光谱、扫描电镜表征了PGMA/(Al)_2O_3;并通过扫描电镜观察了PGMA/(Al)_2O_3在环氧树脂中的分散情况,初步研究了PGMA/(Al)_2O_3对环氧树脂体系的增强增韧性能。结果表明:表面引发自由基聚合反应可以成功制备复合粒子PGMA/(Al)_2O3,其接枝率随引发剂浓度和氧化铝与GMA质量比的增大先增大后减小;将PGMA/(Al)_2O_3填充到环氧密封材料中后,氧化铝颗粒在环氧树脂中分散良好,其复合材料的韧性明显高于未改性Al2O3填充的复合材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号