首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gut microbiota plays a critical role in energy homeostasis and its dysbiosis is associated with obesity. Maternal high-fat diet (HFD) and β-adrenergic stimuli alter the gut microbiota independently; however, their collective regulation is not clear. To investigate the combined effect of these factors on offspring microbiota, 20-week-old offspring from control diet (17% fat)- or HFD (45% fat)-fed dams received an injection of either vehicle or β3-adrenergic agonist CL316,243 (CL) for 7 days and then cecal contents were collected for bacterial community profiling. In a follow-up study, a separate group of mice were exposed to either 8 °C or 30 °C temperature for 7 days and blood serum and cecal contents were used for metabolome profiling. Both maternal diet and CL modulated the gut bacterial community structure and predicted functional profiles. Particularly, maternal HFD and CL increased the Firmicutes/Bacteroidetes ratio. In mice exposed to different temperatures, the metabolome profiles clustered by treatment in both the cecum and serum. Identified metabolites were enriched in sphingolipid and amino acid metabolism in the cecum and in lipid and energy metabolism in the serum. In summary, maternal HFD altered offspring’s response to CL and altered microbial composition and function. An independent experiment supported the effect of thermogenic challenge on the bacterial function through metabolome change.  相似文献   

2.
Tripartite Motif 67 (TRIM67) is an important member of TRIM family proteins, which participates in different cellular processes including immune response, proliferation, differentiation, carcinogenesis, and apoptosis. In recent years, a high fat diet (HFD) has remained one of the main causes of different metabolic diseases and increases in intestinal permeability as well as inducing intestinal inflammation. The current study investigated the protective effects of TRIM67 in the ileum and colon of obese mice. 4-week-old wild-type (WT) C57BL/6N mice and TRIM67 knockout (KO) C57BL/6N mice were selected and randomly divided into four sub-groups, which were fed with control diet (CTR) or HFD for 14 weeks. Samples were collected at the age of 18 weeks for analysis. To construct an in vitro obesity model, over-expressed IPEC-J2 cells (porcine intestinal cells) with Myc-TRIM67 were stimulated with palmitic acid (PA), and its effects on the expression level of TRM67, inflammatory cytokines, and barrier function were evaluated. The KO mice showed pathological lesions in the ileum and colon and this effect was more obvious in KO mice fed with HFD. In addition, KO mice fed with a HFD or CTR diet had increased intestinal inflammation, intestinal permeability, and oxidative stress compared to that WT mice fed with these diets, respectively. Moreover, IPEC-J2 cells were transfected with TRIM67 plasmid to perform the same experiments after stimulation with PA, and the results were found consistent with the in vivo evaluations. Taken together, our study proved for the first time that HFD and TRIM67 KO mice have synergistic damaging effects on the intestine, while TRIM67 plays an important protective role in HFD-induced intestinal damage.  相似文献   

3.
Dietary intake of linoleic acid (LNA, 18:2n-6) has increased dramatically during the 20th century and is associated with greater prevalence of obesity. The endocannabinoid system is involved in regulation of energy balance and a sustained hyperactivity of the endocannabinoid system may contribute to obesity. Arachidonic acid (ARA, 20:4n-6) is the precursor for 2-AG and anandamide (AEA), and we sought to determine if low fat diets (LFD) could be made obesogenic by increasing the endocannabinoid precursor pool of ARA, causing excessive endocannabinoid signaling leading to weight gain and a metabolic profile associated with obesity. Mice (C57BL/6j, 6 weeks of age) were fed 1 en% LNA and 8 en% LNA in low fat (12.5 en%) and medium fat diets (MFD, 35 en%) for 16 weeks. We found that increasing dietary LNA from 1 to 8 en% in LFD and MFD significantly increased ARA in phospholipids (ARA–PL), elevated 2-AG and AEA in liver, elevated plasma leptin, and resulted in larger adipocytes and more macrophage infiltration in adipose tissue. In LFD, dietary LNA of 8 en% increased feed efficiency and caused greater weight gain than in an isocaloric reduction to 1 en% LNA. Increasing dietary LNA from 1 to 8 en% elevates liver endocannabinoid levels and increases the risk of developing obesity. Thus a high dietary content of LNA (8 en%) increases the adipogenic properties of a low fat diet.  相似文献   

4.
Simple SummaryHigh-amylose corn starch, as a kind of resistant starch, could profoundly regulate the gut microbiota and exert anti-obesity properties. Since the gut microbiota was found to improve metabolic health by altering circulating bile acids, therefore, here we investigated the association between the gut microbiota and serum bile acids in high fat diet induced obese mice fed with high-amylose corn starch. We found high-amylose corn starch could modulate the gut microbiota composition and partially restore the alternations in circulating bile acid profiles in obese mice. These influences on gut microbiota and circulating bile acids could be the underlying mechanisms of anti-obesity activity of high-amylose corn starch.AbstractHigh-amylose corn starch is well known for its anti-obesity activity, which is mainly based on the regulatory effects on gut microbiota. Recently, the gut microbiota has been reported to improve metabolic health by altering circulating bile acids. Therefore, in this study, the influence of high-amylose corn starch (HACS) on intestinal microbiota composition and serum bile acids was explored in mice fed with a high fat diet (HFD). The results demonstrated HACS treatment reduced HFD-induced body weight gain, hepatic lipid accumulation, and adipocyte hypertrophy as well as improved blood lipid profiles. Moreover, HACS also greatly impacted the gut microbiota with increased Firmicutes and decreased Bacteroidetes relative abundance being observed. Furthermore, compared to ND-fed mice, the mice with HFD feeding exhibited more obvious changes in serum bile acids profiles than the HFD-fed mice with the HACS intervention, showing HACS might restore HFD-induced alterations to bile acid composition in blood. In summary, our results suggested that the underlying mechanisms of anti-obesity activity of HACS may involve its regulatory effects on gut microbiota and circulating bile acids.  相似文献   

5.
High fat diet (HFD) is an important factor in the development of metabolic diseases, with liver as metabolic center being highly exposed to its influence. However, the effect of HFD-induced metabolic stress with respect to ovary hormone depletion and sirtuin 3 (Sirt3) is not clear. Here we investigated the effect of Sirt3 in liver of ovariectomized and sham female mice upon 10 weeks of feeding with standard-fat diet (SFD) or HFD. Liver was examined by Folch, gas chromatography and lipid hydroperoxide analysis, histology and oil red staining, RT-PCR, Western blot, antioxidative enzyme and oxygen consumption analyses. In SFD-fed WT mice, ovariectomy increased Sirt3 and fatty acids synthesis, maintained mitochondrial function, and decreased levels of lipid hydroperoxides. Combination of ovariectomy and Sirt3 depletion reduced pparα, Scd-1 ratio, MUFA proportions, CII-driven respiration, and increased lipid damage. HFD compromised CII-driven respiration and activated peroxisomal ROS scavenging enzyme catalase in sham mice, whereas in combination with ovariectomy and Sirt3 depletion, increased body weight gain, expression of NAFLD- and oxidative stress-inducing genes, and impaired response of antioxidative system. Overall, this study provides evidence that protection against harmful effects of HFD in female mice is attributed to the combined effect of female sex hormones and Sirt3, thus contributing to preclinical research on possible sex-related therapeutic agents for metabolic syndrome and associated diseases.  相似文献   

6.
The growing prevalence of childhood obesity has become a serious health problem over the past few decades. Although the immune system is greatly affected by childhood obesity, whether obesity influences the T cell development in the thymus is poorly understood. In this study, we used a high-fat diet (HFD)-induced obesity mice model to study the influence of HFD from weaning on the thymus. C57BL/6 mice (male, 3 weeks old) were fed a HFD or standard diet (lean controls) for 6 weeks. The bodyweight of mice fed with an HFD was 28% higher than that in the control group, while the thymus weight of HFD mice decreased by 15% compared with controls. As expected, thymic triacylglycerol content of the HFD mice increased by 37% compared to the control mice. Importantly, the frequencies of CD4+ and CD8+ single-positive (SP) thymocytes decreased by 38% and 44%, respectively. The apoptotic analysis revealed that thymic tissue of HFD mice had a higher level of Annexin-V positive thymocytes than control animals. Furthermore, the immunoblotting analysis showed that survival signal pathways in the thymus were impaired in the HFD mice, including the AKT/mTOR and ERK pathways. With the analysis of T-cell receptor excision circles (TREC), we found that HFD-induced obesity decreased recent thymic emigrants in spleen tissue. Our findings indicate that HFD from the weaning period impairs T cell development in the thymus, possibly by induction of apoptosis of thymocytes, involving disruption of survival signal pathways.  相似文献   

7.
(1) The high-fat diet (HFD) of western countries has dramatic effect on the health of several organs, including the digestive tract, leading to the accumulation of fats that can also trigger a chronic inflammatory process, such as that which occurs in non-alcohol steatohepatitis. The effects of a HFD on the small intestine, the organ involved in the absorption of this class of nutrients, are still poorly investigated. (2) To address this aspect, we administered a combined HFD with sucrose (HFD w/Suc, fat: 58% Kcal) regimen (18 months) to mice and investigated the morphological and molecular changes that occurred in the wall of proximal tract of the small intestine compared to the intestine of mice fed with a standard diet (SD) (fat: 18% Kcal). (3) We found an accumulation of lipid droplets in the mucosa of HFD w/Suc-fed mice that led to a disarrangement of mucosa architecture. Furthermore, we assessed the expression of several key players involved in lipid metabolism and inflammation, such as perilipin, leptin, leptin receptor, PI3K, p-mTOR, p-Akt, and TNF-α. All these molecules were increased in HFD mice compared to the SD group. We also evaluated anti-inflammatory molecules like adiponectin, adiponectin receptor, and PPAR-γ, and observed their significant reduction in the HFD w/Suc group compared to the control. Our data are in line with the knowledge that improper eating habits present a primary harmful assault on the bowel and the entire body’s health. (4) These results represent a promising starting point for future studies, helping to better understand the complex and not fully elucidated spectrum of intestinal alterations induced by the overconsumption of fat.  相似文献   

8.
Maternal nutrition may influence metabolic profiles in offspring. We aimed to investigate the effect of maternal folic acid supplement on glucose metabolism in mouse offspring fed a high-fat diet (HFD). Sixty C57BL/6 female mice were randomly assigned into three dietary groups and fed the AIN-93G diet containing 2 (control), 5 (recommended folic acid supplement, RFolS) or 40 (high folic acid supplement, HFolS) mg folic acid/kg of diet. All male offspring were fed HFD for eight weeks. Physiological, biochemical and genetic variables were measured. Before HFD feeding, developmental variables and metabolic profiles were comparable among each offspring group. However, after eight weeks of HFD feeding, the offspring of HFolS dams (Off-HFolS) were more vulnerable to suffer from obesity (p = 0.009), glucose intolerance (p < 0.001) and insulin resistance (p < 0.001), compared with the controls. Off-HFolS had reduced serum adiponectin concentration, accompanied with decreased adiponectin mRNA level but increased global DNA methylation level in white adipose tissue. In conclusion, our results suggest maternal HFolS exacerbates the detrimental effect of HFD on glucose intolerance and insulin resistance in male offspring, implying that HFolS during pregnancy should be adopted cautiously in the general population of pregnant women to avoid potential deleterious effect on the metabolic diseases in their offspring.  相似文献   

9.
Clotting abnormalities are discussed both in the context with thyroid dysfunctions and obesity caused by a high fat diet. This study aimed to investigate the impact of hypo-, or hyperthyroidism on the endogenous thrombin potential (ETP), a master indicator of clotting activation, on Sprague Dawley rats fed a normal or high fat diet. Female Sprague Dawley rats (n = 66) were grouped into normal diet (ND; n = 30) and high-fat diet (HFD; n = 36) groups and subdivided into controls, hypothyroid and hyperthyroid groups, induced through propylthiouracil or triiodothyronine (T3) treatment, respectively. After 12 weeks of treatment ETP, body weight and food intake were analyzed. Successfully induced thyroid dysfunction was shown by T3 levels, both under normal and high fat diet. Thyroid dysfunction was accompanied by changes in calorie intake and body weight. In detail, compared to euthyroid controls, hypothyroid rats showed significantly increased—and hyperthyroid animals significantly decreased—ETP levels. High fat diet potentiated these effects in both directions. In summary, we are the first to show that hypothyroidism and high fat diet potentiate the thrombotic capacity of the clotting system in Sprague Dawley rats. This effect may be relevant for cardiovascular disease where thyroid function is poorly understood as a pathological contributor in the context of clotting activity and obesogenic nutrition.  相似文献   

10.
The current study addresses the effects of a high-fat diet on liver and brain fatty acid compositions and the interaction of that diet with diabetes in a type 1 mouse model. Adult, male, normal and streptozotocin-induced diabetic C57BL/6 mice were fed standard (14 % kcal from fat) or high-fat (54 % kcal from fat, hydrogenated vegetable shortening and corn oil) diets for 8 weeks. Liver and whole brain total phospholipid fatty acid compositions were then determined by TLC/GC. In the liver of non-diabetic mice, the high-fat diet increased the percentages of 18:1n-9, 20:4n-6, and 22:5n-6 and decreased 18:2n-6 and 22:6n-3. Diabetes increased 16:0 in liver, and decreased 18:1n-7 and 20:4n-6. The effects of the high-fat diet on liver phospholipids in diabetic mice were similar to those in non-diabetic mice, or were of smaller magnitude. In the brain, the high-fat diet increased 18:0 and 20:4n-6 of non-diabetic, but not diabetic mice. Brain 22:5n-6 acid was increased by the high-fat diet in both non-diabetic and diabetic mice, but this increase was smaller in diabetic mice. Diabetes alone did not alter the percentage of any individual fatty acid in brain. This indicates that the effects of a high-fat diet on liver and brain phospholipid fatty acid compositions are partially attenuated by concomitant hyperglycemia with hypoinsulinemia.  相似文献   

11.
12.
Since liver fatty acid binding protein (L-FABP) facilitates uptake/oxidation of long-chain fatty acids in cultured transfected cells and primary hepatocytes, loss of L-FABP was expected to exacerbate weight gain and/or obesity in response to high dietary fat. Male and female wild-type (WT) and L-FABP gene-ablated mice, pair-fed a defined isocaloric control or high fat diet for 12 weeks, consumed equal amounts of food by weight and kcal. Male WT mice gained weight faster than their female WT counterparts regardless of diet. L-FABP gene ablation enhanced weight gain more in female than male mice—an effect exacerbated by high fat diet. Dual emission X-ray absorptiometry revealed high-fat fed male and female WT mice gained mostly fat tissue mass (FTM). L-FABP gene ablation increased FTM in female, but not male, mice—an effect also exacerbated by high fat diet. Concomitantly, L-FABP gene ablation decreased serum β-hydroxybutyrate in male and female mice fed the control diet and, even more so, on the high-fat diet. Thus, L-FABP gene ablation decreased fat oxidation and sensitized all mice to weight gain as whole body FTM and LTM—with the most gain observed in FTM of control vs high-fat fed female L-FABP null mice. Taken together, these results indicate loss of L-FABP exacerbates weight gain and/or obesity in response to high dietary fat.  相似文献   

13.
Background: Concerns are emerging that a high-fat diet rich in n-6 PUFA (n-6HFD) may alter gut microbiome and increase the risk of intestinal disorders. Research is needed to model the relationships between consumption of an n-6HFD starting at weaning and development of gut dysbiosis and colonic inflammation in adulthood. We used a C57BL/6J mouse model to compare the effects of exposure to a typical American Western diet (WD) providing 58.4%, 27.8%, and 13.7% energy (%E) from carbohydrates, fat, and protein, respectively, with those of an isocaloric and isoproteic soybean oil-rich n-6HFD providing 50%E and 35.9%E from total fat and carbohydrates, respectively on gut inflammation and microbiome profile. Methods: At weaning, male offspring were assigned to either the WD or n-6HFD through 10–16 weeks of age. The WD included fat exclusively from palm oil whereas the n-6HFD contained fat exclusively from soybean oil. We recorded changes in body weight, cyclooxygenase-2 (COX-2) expression, colon histopathology, and gut microbiome profile. Results: Compared to the WD, the n-6HFD increased plasma levels of n-6 fatty acids; colonic expression of COX-2; and the number of colonic inflammatory and hyperplastic lesions. At 16 weeks of age, the n-6HFD caused a marked reduction in the gut presence of Firmicutes, Clostridia, and Lachnospiraceae, and induced growth of Bacteroidetes and Deferribacteraceae. At the species level, the n-6HFD sustains the gut growth of proinflammatory Mucispirillum schaedleri and Lactobacillus murinus. Conclusions: An n-6HFD consumed from weaning to adulthood induces a shift in gut bacterial profile associated with colonic inflammation.  相似文献   

14.
15.
There is growing evidence for a relationship between gut dysbiosis and hearing loss. Inflammatory bowel disease, diet-induced obesity (DIO), and type 2 diabetes have all been linked to hearing loss. Here, we investigated the effect of a chronic high-fat diet (HFD) on the development of inner ear inflammation using a rodent model. Three-week-old CD-1 (Swiss) mice were fed an HFD or a control diet for ten weeks. After ten weeks, mouse cochleae were harvested, and markers of cochlear inflammation were assessed at the protein level using immunohistochemistry and at the gene expression level using quantitative real-time RT-PCR. We identified increased immunoexpression of pro-inflammatory biomarkers in animals on an HFD, including intracellular adhesion molecule 1 (ICAM1), interleukin 6 receptor α (IL6Rα), and toll-like-receptor 2 (TLR2). In addition, increased numbers of ionized calcium-binding adapter molecule 1 (Iba1) positive macrophages were found in the cochlear lateral wall in mice on an HFD. In contrast, gene expression levels of inflammatory markers were not affected by an HFD. The recruitment of macrophages to the cochlea and increased immunoexpression of inflammatory markers in mice fed an HFD provide direct evidence for the association between HFD and cochlear inflammation.  相似文献   

16.
Lipid metabolites regulate fatty acid and glucose homeostasis. The intention of the current study is to identify circulating lipid species, which are altered in rodent obesity and strongly correlate with the classically measured metabolites glucose, triglycerides, and cholesterol. Mice fed a high fat diet (HFD) for 14 weeks have increased body weight and fasting glucose. Serum triglycerides are not altered, while cholesterol tends to be increased. Accordingly, major cholesteryl ester (CE) species and free cholesterol are not significantly raised in obesity while minor metabolites, including CE 20:3 and CE 18:3, are increased or reduced, respectively. Distinct sphingomyelin (SM) species are elevated while ceramides are not raised. Phosphatidylinositol (PI) species, including PI 34:1, are raised while others are decreased. PI 34:1 strongly correlates with fasting glucose and proinsulin levels. Phosphatidylcholine (PC) 26:0, 40:2, and 40:5, which are induced in obesity, correlate with cholesterol. PC 38:4 and PC 40:6 are also raised in fat fed mice and positively correlate with fasting glucose. Lysophosphatidylcholine (LPC) species are also changed in obesity and the already shown reduction of LPC 16:1 has been confirmed. LPC 22:4, which is increased, correlates with serum cholesterol. The data indicate that circulating levels of various lipid species are changed in the obesity model studied and some of them are strongly associated with classically measured metabolites.  相似文献   

17.
While exercise training (ET) is an efficient strategy to manage obesity, it is recommended with a dietary plan to maximize the antiobesity functions owing to a compensational increase in energy intake. Capsiate is a notable bioactive compound for managing obesity owing to its capacity to increase energy expenditure. We aimed to examine whether the antiobesity effects of ET can be further enhanced by capsiate intake (CI) and determine its effects on resting energy expenditure and metabolic molecules. Mice were randomly divided into four groups (n = 8 per group) and fed high-fat diet. Mild-intensity treadmill ET was conducted five times/week; capsiate (10 mg/kg) was orally administered daily. After 8 weeks, resting metabolic rate and metabolic molecules were analyzed. ET with CI additively reduced the abdominal fat rate by 18% and solely upregulated beta-3-adrenoceptors in adipose tissue (p = 0.013) but did not affect the metabolic molecules in skeletal muscles. Surprisingly, CI without ET significantly increased the abdominal fat rate (p = 0.001) and reduced energy expenditure by 9%. Therefore, capsiate could be a candidate compound for maximizing the antiobesity effects of ET by upregulating beta-3-adrenoceptors in adipose tissue, but CI without ET may not be beneficial in managing obesity.  相似文献   

18.
Hyperlipidemia is a common cardiovascular disease. At present, the influence of high fat diet (HFD) on this is being explored. Recently, vegetable oils rich in omega‐3 have been reported that can treat hyperlipidemia caused by HFD. However, the effects of chia seed oil (CSO) on HFD‐induced hyperlipidemia and oxidative stress are poorly studied. Hence, in this study, the effects of CSO on hyperlipidemia and oxidative stress induced by HFD in mice are analyzed by various commercial kits, section staining, and protein expression. The results show that CSO decreases body weight and organ index. Meanwhile, CSO reduces serum lipid levels of total cholesterol, triglyceride, and low‐density lipoprotein cholesterol. It can also elevate superoxide dismutase and glutathione peroxidase activities and reduce malondialdehyde content in serum and liver. The results of histopathological analysis prove that CSO improves hepatic steatosis and reduces lipid deposition. Further, the results of western blot demonstrate that CSO upregulates the expression of peroxisome proliferator‐activated receptor alpha and carnitine palmitoyltransferase 1a in the liver. As a result, CSO may be a potential lipid‐lowering oil to prevent and treat HFD‐induced hyperlipidemia and oxidative stress. Practical Applications CSO, as a byproduct of chia seed processing, is a rich source of α‐linolenic acid. This study investigates the effects of CSO on HFD‐induced hyperlipidemia and oxidative stress in mice. It is concluded that dietary CSO can improve the hyperlipidemia in HFD‐induced mice via analysis of lipid parameters, histopathology study of the liver, and lipid metabolism related genes. In addition, supplementation of CSO also can improve the oxidative stress in mice. Therefore, CSO can be used for the prevention of hyperlipidemia and oxidative stress. This research provides a theoretical basis for the comprehensive development and utilization of functional chia seed oil.  相似文献   

19.
The effect of dietary feeding of hydroxyethyl methylcellulose (HEMC) and hydroxypropyl methylcellulose (HPMC) on the glucose metabolism and antioxidative status in mice under high fat diet conditions was investigated. The mice were randomly divided and given experimental diets for six weeks: normal control (NC group), high fat (HF group), and high fat supplemented with either HEMC (HF+HEMC group) or HPMC (HF+HPMC group). At the end of the experimental period, the HF group exhibited markedly higher blood glucose and insulin levels as well as a higher erythrocyte lipid peroxidation rate relative to the control group. However, diet supplementation of HEMC and HPMC was found to counteract the high fat-induced hyperglycemia and oxidative stress via regulation of antioxidant and hepatic glucose-regulating enzyme activities. These findings illustrate that HEMC and HPMC were similarly effective in improving the glucose metabolism and antioxidant defense system in high fat-fed mice and they may be beneficial as functional biomaterials in the development of therapeutic agents against high fat dietinduced hyperglycemia and oxidative stress.  相似文献   

20.
Changes in dietary composition will have a significant impact on the nutritional status of the mother and the offspring. To examine the relevant hormone level changes during lactation and the expression of fatty acid transporters in the placenta and liver under the condition of a high‐fat (HF) diet, we established HF animal models and conducted a cross‐fostering program to mimic the shift in diet. On gestation day (GD)18, the weight of placenta in the HF group was significantly higher than that in the control group (p < 0.05). HF‐fed male pups had a significantly lower serum insulin level, but the same phenomenon was not found in females. On the contrary, serum triacylglycerol (TAG) level presented a tendency to decrease only in female offspring. Oil red O staining showed lipid accumulation in the HF diet offspring livers. The mRNA levels of FATP4 in the placenta in the HF diet group were significantly upregulated compared to the control diet group (p < 0.05). High‐fat diet (HFD) consumption also altered the liver mRNA levels of FATP4, SREBP‐1, and SCD‐1 in the male offspring, while the changes in protein levels of FATP4 were not observed in either sex. In conclusion, maternal HF diet has a profound impact on offspring growth, metabolism, and the risk of metabolic disorders, which would depend on the exposure period of pregnancy and lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号