首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cucurbitin extracted from pumpkin (Cucurbita pepo) oil cake was enzymatically hydrolysed with three different enzymes viz. alcalase, flavourzyme and pepsin. Antioxidative and functional properties of cucurbitin hydrolysates with different degrees of hydrolysis (DH) were investigated. The antioxidant activity of the hydrolysates was strongly dependent on the enzyme used. The hydrolysates obtained by alcalase and pepsin showed antioxidative potential whereas flavourzyme hydrolysates did not demonstrate these activities. Reducing power and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) scavenging activity of cucurbitin hydrolysate were positively related to DH. The highest antioxidant activity was found in the hydrolysate obtained by alcalase at DH 25.6 % [reducing power of 0.25 ± 0.01 A700 nm and ABTS scavenging activity of 3.34 ± 0.02 mmol/L Trolox equivalent antioxidant coefficients (TEAC)]. Hydrolysis by all enzymes increased the protein solubility within the studied pH range. The best emulsion activity and stability index (EAI = 143.28 ± 3.05 m2/g and ESI = 87.5 ± 1.96 min) have hydrolysates produced by flavourzyme (DH 9.2 %) whereas alcalase produced hydrolysates with the best foaming capacity (FC = 242 ± 3.21). The results demonstrate that hydrolysates produced in the present study have good functional properties as well as antioxidant activity indicating their possible use in different food systems.  相似文献   

2.
In recent years, food protein-derived hydrolysates have received considerable attention because of their numerous health benefits. Amongst the hydrolysates, those with anti-hypertensive and anti-oxidative activities are receiving special attention as both activities can play significant roles in preventing cardiovascular diseases. The present study investigated the angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities of Actinopyga lecanora (A. lecanora) hydrolysates, which had been prepared by alcalase, papain, bromelain, flavourzyme, pepsin, and trypsin under their optimum conditions. The alcalase hydrolysate showed the highest ACE inhibitory activity (69.8%) after 8 h of hydrolysis while the highest anti-oxidative activities measured by 2,2-diphenyl 1-1-picrylhydrazyl radical scavenging (DPPH) (56.00%) and ferrous ion-chelating (FIC) (59.00%) methods were exhibited after 24 h and 8 h of hydrolysis, respectively. The ACE-inhibitory and anti-oxidative activities displayed dose-dependent trends, and increased with increasing protein hydrolysate concentrations. Moreover, strong positive correlations between angiotensin-I converting enzyme (ACE) inhibitory and anti-oxidative activities were also observed. This study indicates that A. lecanora hydrolysate can be exploited as a source of functional food owing to its anti-oxidant as well as anti-hypertension functions.  相似文献   

3.
The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE) inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes) and ex vivo digestion (with human gastrointestinal enzymes). Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50%) of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.  相似文献   

4.
A study was conducted to determine bioactivities of flaxseed (Linum usitatissimum L.; variety: Valour) proteins and their hydrolysates. Isolated flaxseed proteins were treated with Flavourzyme® at different levels of enzyme to substrate ratio (E/S) and hydrolysis time. The unhydrolysed proteins and hydrolysates were studied for angiotensin I-converting enzyme inhibiting (ACEI) activity, hydroxyl radical (OH·) scavenging activity and bile acid binding ability. Flavourzyme catalysed hydrolysis generated hydrolysates with a 11.94–70.62% degree of hydrolysis (DH). The hydrolysates (0.67 mg/ml) had strong ACEI activity (71.59–88.29%). The maximum ACEI activity containing hydrolysate exhibited an IC50 of 0.07 mg/ml (E/S: 1.5; Time: 12 h; DH: 11.94%). The OH· scavenging activity of the hydrolysates (0.5 mg/ml) was 12.48–22.08% with an IC50 of 1.56 mg/ml in the sample possessing maximum activity (E/S: 47.5; Time 0.7 h; DH: 24.63%). Both these activities were greater in hydrolysates with lower DH and higher peptide chain length (PCL) than those with higher DH and lower PCL. Hydrolysed flaxseed proteins (0.67 mg/ml) had no bile acid binding ability. The unhydrolysed proteins had no ACEI or OH· scavenging activity but demonstrated bile acid binding ability.  相似文献   

5.
A newly discovered bacterium, Lysinibacillus chungkukjangi, was isolated from the sludge of rice bran oil processing. When the bacterium was grown on rice bran, it produced biosurfactant which reduced the surface tension of the media to 27.9 from 72 mN/m. The biosurfactant was recovered by a solvent extraction method and characterized with the help of various structure elucidation techniques viz. FTIR, 1H- and 13C-NMR spectroscopy and LC–MS analysis. The combined results of FTIR and NMR revealed the presence of carbonyl, olefinic and aliphatic groups, with the typical spectra of lipids. Moreover, LC–MS analysis also supported the same information. The biosurfactant was also studied for its anti-oxidant and microbial enhanced oil recovery (MEOR) potential. The anti-oxidant activity was observed by the DPPH free radical scavenging method using ascorbic acid as the standard. The IC50 (the half maximal inhibitory concentration) was calculated and for standard, it was 0.056 mg/mL and for the biosurfactant it turned out to be 1.3 mg/mL which shows its good anti-oxidant potential. The sandpack test was performed to check its MEOR potential and kerosene was recovered up to 90 %, which shows its excellent applicability in the MEOR processes.  相似文献   

6.
The effect of hydrolysis parameters (temperature, initial enzyme/substrate ratio and time) on the hydrolysis of pumpkin oil cake protein isolate (PuOC PI) with acid protease from Aspergillus niger and the antioxidant potency of the obtained hydrolysates were studied by response surface methodology (RSM). The hydrolysis progress, measured by the degree of hydrolysis (DH), was described by a second-order polynomial model (R2 = 0.77) and the conditions for optimum DH (42.94%) were found at temperature of 40 °C, enzyme/substrate ratio (E/S) 4.38 HUT/mg of substrate proteins and 85 min. The antiradical activity (AA) of the PuOC PI hydrolysates was examined by the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) assay; all hydrolysates showed a concentration dependent scavenging activity against DPPH radicals. The AA of hydrolysates was influenced by process parameters and was presented also by a second-order polynomial model (R2 = 0.7). The conditions to achieve the highest DH did not result hydrolysates with the optimum AA; the highest AA ranged from 34% to 40% and were found in hydrolysates obtained at 50 °C.  相似文献   

7.
The microbial conversion of agro-industrial oil wastes into biosurfactants shows promise as a biomass refinery approach. In this study, Bacillus subtilis #309 was applied to produce surfactin using rapeseed and sunflower cakes, the most common oil processing side products in Europe. Studies of the chemical composition of the substrates were performed, to determine the feasibility of oil cakes for surfactin production. Initially, screening of proteolytic and lipolytic activity was performed to establish the capability of B. subtilis #309 for substrate utilization and hence effective surfactin production. B. subtilis #309 showed both proteolytic and lipolytic activity. The process of surfactin production was carefully analyzed by measurement of the surfactin concentration, pH, surface tension (ST) and emulsification index (E24). The maximal surfactin concentration in the sunflower and rapeseed cake medium reached 1.19 ± 0.03 and 1.45 ± 0.09 g/L, respectively. At the same time, a progressive decrease in the surface tension and increase in emulsification activity were observed. The results confirmed the occurrence of various surfactin homologues, while the surfactin C15 was the dominant one. Finally, the analysis of surfactin biological function exhibited antioxidant activity and significant angiotensin-converting enzyme (ACE)-inhibitory activity. The half-maximal inhibitory concentration (IC50) value for ACE inhibition was found to be 0.62 mg/mL for surfactin. Molecular docking of the surfactin molecule to the ACE domains confirmed its inhibitory activity against ACE. Several interactions, such as hydrophobic terms, hydrogen bonds and van der Waals interactions, were involved in the complex stabilization. To the best of our knowledge, this is the first report describing the effect of a lipopeptide biosurfactant, surfactin, produced by B. subtilis for multifunctional properties in vitro, namely the ACE-inhibitory activity and the antioxidant properties, using different assays, such as 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP). Thus, the ACE-inhibitory lipopeptide biosurfactant shows promise to be used as a natural antihypertensive agent.  相似文献   

8.
Isothiocyanates(ITCs) extracts were prepared from fresh broccoli.Their antioxidant properties were evaluated by using the in vitro bioassays,including superoxide anion radical( 2 O·-) ,hydroxyl radical(HO·-) and 2,2-diphenyl-1-picrylhydracyl(DPPH·) radical-scavenging methods,lipid peroxidation assay,and reducing power assay.The ITCs extracts exhibited significant dose-dependent antioxidant activities(P0.01) .Its antioxidant-stability was affected by temperature and storage condition,although it was more stable than vitamin C(Vc) .GC-MS iden-tified sulforaphane in the ITCs extracts.The antioxidant activity of sulforaphane was approximately one tenth to one fifth of that of Vc.Sulforaphane was experimented to be one of dominating contributors to antioxidant capacity of ITCs extracts.However,there was no direct antioxidant activity found for benzyl isothiocyanate(BITC) in vitro. Therefore,it could be concluded that the general group(-N=C=S) was not the essential part for the antioxidant activity of sulforaphane.It is suggested that the ITCs extracts from broccoli can be developed into a promising food additive for healthy food.  相似文献   

9.
The aim of study was to model and optimize the extraction of polyphenols and flavonoids with expressed antioxidant activity from chickpea seeds using a central composite design. The optimal extraction conditions were the extraction time of 145.5 min, ethanol concentration of 83.7% and liquid-to-solid ratio of 24.9 (expressed as cm3 per g). The content of total polyphenol and flavonoid was 2.75 g gallic acid equivalent per kilogram of the dried extract and 0.147 g rutin equivalent per kilogram of the dried extract, respectively. Using 2,2-diphenyl-1-picrylhydrazyl assay, it was found that the optimal extract had the IC50 of 1.55 mg cm?3.  相似文献   

10.
The functional characteristics which include protein solubility at different pH, emulsifying and foaming properties, degree of hydrolysis, molecular weight distribution, antioxidant and ACE inhibitory activity of sesame protein hydrolysates prepared with pepsin, papain and alcalase enzymes were evaluated. The rate of degree of hydrolysis was found to reach maximum (25–30%) within the first time fragment i.e 10 min but 80% of hydrolysis was obtained in 120 min with alcalase. SDS-PAGE of hydrolysates with papain, pepsin and alcalase evinced bands of low molecular weight protein of 14.3 kDa and even lower for alcalase treatment of 120 min. Hydrolysates so formed were of improved functional properties as evident from emulsifying and foaming property. Hydrolysis with different proteases enhanced the protein solubility significantly at pH 7.0. Antioxidative assay revealed radical scavenging activity of the hydrolysates with papain hydrolysates showing maximum antioxidative efficacy. The ultra-filtered peptide fractions which showed comparable ACE inhibitory activity were sequenced by MALDI-TOF and matched to that of previously identified ACE inhibitory peptides. The results corroborate the ACE inhibitory effect of the peptides. Hence, these highly bioactive protein hydrolysates produced from waste sesame meals can be successfully employed in various functional food formulations.  相似文献   

11.
This study reports on the extraction of strongly angiotensin-converting enzyme (ACE) inhibiting dipeptides from protein hydrolysates obtained by enzymatic proteolysis. Several dipeptides with different ACE inhibitory activities and hydrophobicities were investigated regarding to their adsorption affinity on commercially available activated carbon material Norit DLC Super 50. This porous carbon exhibits extremely high adsorption capacities for the strongest ACE inhibitor Ile-Trp (IC50 = 0.7 μM) of 726 mg/g as well as fast adsorption kinetics due to its micropore structure and small particle size. The filling of the pores was monitored by N2-physisorption revealing that complete pore filling occurred and Ile-Trp adsorption was only limited by the specific pore volume of Norit DLC Super 50, whereas less active peptides were adsorbed less efficient due to their higher hydrophobicity and did not impact Ile-Trp adsorption. After the adsorption, Ile-Trp was recovered by elution with ethanol. Three protein hydrolysates obtained by different enzyme combinations were mixed with activated carbon and the peptide adsorption was investigated by RP-HPLC. The amount of Trp-containing and ACE-inhibiting short chain peptides decreased selectively in contrast to more polar peptides, but the amount of adsorbed Ile-Trp is smaller than for single component adsorption.  相似文献   

12.
The aim of this study was to produce a valuable protein hydrolysate from palm kernel cake (PKC) for the development of natural antioxidants. Extracted PKC protein was hydrolyzed using different proteases (alcalase, chymotrypsin, papain, pepsin, trypsin, flavourzyme, and bromelain). Subsequently, antioxidant activity and degree of hydrolysis (DH) of each hydrolysate were evaluated using DPPH• radical scavenging activity and O-phthaldialdehyde spectrophotometric assay, respectively. The results revealed a strong correlation between DH and radical scavenging activity of the hydrolysates, where among these, protein hydrolysates produced by papain after 38 h hydrolysis exhibited the highest DH (91 ± 0.1%) and DPPH• radical scavenging activity (73.5 ± 0.25%) compared to the other hydrolysates. In addition, fractionation of the most effective (potent) hydrolysate by reverse phase high performance liquid chromatography indicated a direct association between hydrophobicity and radical scavenging activity of the hydrolysates. Isoelectric focusing tests also revealed that protein hydrolysates with basic and neutral isoelectric point (pI) have the highest radical scavenging activity, although few fractions in the acidic range also exhibited good antioxidant potential.  相似文献   

13.
Commercially available niger (Guizotia abyssinica (L.f.) Cass.) seed was investigated to evaluate the effect of extraction solvent on oil and bioactives composition. For this purpose, niger seeds were subjected to solvent extraction using solvents of different polarity, viz., hexane, petroleum ether, chloroform, acetone, methanol and ethanol. The oil content of niger seeds obtained after extraction with solvents of different polarities was in the range of 31.8–41.3 g/100 g. The extracted oil was characterized by the following parameters: color (40.0–95.0 Lovibond units), free fatty acids (3.6–12.3 g/100 g), peroxide value (3.2–7.8 mequiv O2/kg), iodine value (137.6–140.3 cg I2/g), saponification value (177.3–185.9 mg KOH/g) and unsaponifiable matter (1.3–4.3 g/100 g). Among fatty acids, linoleic acid (69.4–73.2 %) was the major fatty acid and trilinolein (31.2–33.4 %) was the major triacylglycerol. The composition of bioactive molecules was 171.9–345.8 ppm of total tocopherols; 247.1–2,647.7 ppm of total phenolics; 1,249.6–6,309.3 ppm of total sterols and 18.9–181.0 ppm of total carotenoids. Among the tocopherols, α-tocopherol was the major component with 154–276 ppm. Of the total phenolics, vanillic acid with 176–1,709 ppm was the major phenolic compound in the oil extracted using different solvents. Ethanol-extracted oil showed a 13.9-fold better oxidative stability and a higher radical scavenging activity (IC50 value of 9.2 mg/mL) compared to hexane-extracted oil (IC50 value of 40.3 mg/mL). This is probably the first report of its kind on solvent extractability of bioactives of niger seed.  相似文献   

14.
The aim of this work was to characterize the structural and functional properties of hemp seed protein‐derived acetylcholinesterase (AChE)‐inhibitory enzymatic hydrolysates. Hemp seed protein isolate hydrolysis was performed using six different proteases (pepsin, papain, thermoase, flavourzyme, alcalase and pepsin + pancreatin) at different concentrations (1–4 %). The degree of hydrolysis was directly related to the amount of protease used but had no relationship with AChE‐inhibitory activity. Amino acid composition results showed that the hemp seed protein hydrolysates (HPHs) had high levels of negatively charged amino acids (39.62–40.18 %) as well as arginine. The 1 % pepsin HPH was the most active AChE inhibitor with ~6 µg/mL IC50 value when compared to 8–11.6 µg/mL for the other HPHs. Mass spectrometry analysis showed that most of the peptides in all the hydrolysates were less than 1000 Da in size. However, the pepsin HPHs contained larger‐sized peptides (244–1009 Da) than the papain HPHs (246–758 Da), which in turn was larger than the alcalase HPH (246–607 Da). The higher AChE‐inhibitory effects of the pepsin HPHs may be due to increased synergistic effects from a wider peptide size range when compared to the papain and alcalase HPHs that had narrower ranges. The narrow peptide size range in the alcalase HPH confirms the higher efficiency of this protease in releasing small‐sized peptides from food proteins.  相似文献   

15.
Protein by-products from the extraction of lecithin from egg yolk can be converted into value-added products, such as bioactive hydrolysates and peptides that have potential health enhancing antioxidant, and antihypertensive properties. In this study, the antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of peptides isolated and purified from egg yolk protein were investigated. Defatted egg yolk was hydrolyzed using pepsin and pancreatin and sequentially fractionated by ultrafiltration, followed by gel filtration to produce egg yolk gel filtration fractions (EYGF). Of these, two fractions, EYGF-23 and EYGF-33, effectively inhibited the peroxides and thiobarbituric acid reactive substance (TBARS) in an oxidizing linoleic acid model system. The antioxidant mechanism involved superoxide anion and hydroxyl radicals scavenging and ferrous chelation. The presence of hydrophobic amino acids such as tyrosine (Y) and tryptophan (W), in sequences identified by LC-MS as WYGPD (EYGF-23) and KLSDW (EYGF-33), contributed to the antioxidant activity and were not significantly different from the synthetic BHA antioxidant. A third fraction (EYGF-56) was also purified from egg yolk protein by gel filtration and exhibited high ACE inhibitory activity (69%) and IC50 value (3.35 mg/mL). The SDNRNQGY peptide (10 mg/mL) had ACE inhibitory activity, which was not significantly different from that of the positive control captopril (0.5 mg/mL). In addition, YPSPV in (EYGF-33) (10 mg/mL) had higher ACE inhibitory activity compared with captopril. These findings indicated a substantial potential for producing valuable peptides with antioxidant and ACE inhibitory activity from egg yolk.  相似文献   

16.
Nitro‐fatty acids (NO2‐FA) have been widely studied with regard to their identification, structural characterization, and biological actions. NO2‐FA could also be present endogenously esterified to phospholipids (PL), and NO2‐PL were already detected in cardiac mitochondria from diabetic rats and cardiomyoblasts subjected to starvation. However, the biological actions of NO2‐PL have been overlooked. In this study, we evaluate the antioxidant and anti‐inflammatory potential of the nitrated 1‐palmitoyl‐2‐oleoyl‐sn‐glycero‐3‐phosphocholine (POPC) formed in vitro by incubation with NO2BF4, in a well‐recognized mimetic model of nitroxidative stress. Nitrated POPC showed anti‐radical ability to reduce both 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH?) (IC20 = 225 ± 4 μg/mL; Trolox equivalent (TE) = 86 ± 6 μmol Trolox/g lipid) and 2,2′‐azino‐bis‐3‐ethylbenzothiazoline‐6‐sulfonic acid radical cation (ABTS?+) (IC50 = 124 ± 2 μg/mL; TE = 152 ± 9 μmol Trolox/g lipid). Also, higher lag times were achieved in oxygen radical absorbance capacity (ORAC) assay for nitrated POPC, indicating a faster reaction with oxygen‐derived radicals (TE = 1.03 ± 0.22 and TE = 1.30 ± 0.16 mmol Trolox/g lipid for nonmodified and nitrated POPC, respectively). Nitrated POPC showed the ability to inhibit lipid oxidation induced by the hydroxyl radical generated under Fenton reaction conditions, monitored by electrospray ionization (ESI) mass spectrometry (MS) using phosphatidylcholine (PtdCho) liposomes as a model of cell membrane. Nitrated POPC showed anti‐inflammatory potential, as assessed by the inhibition of inducible nitric oxide synthase (iNOS) expression in RAW 264.7 macrophages activated by the Toll‐like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) in a well‐described in vitro model of inflammation. Altogether, this study provides new clues regarding the antioxidant and anti‐inflammatory potential of nitrated POPC, which should be explored in depth.  相似文献   

17.
《分离科学与技术》2012,47(9):1528-1533
Semi-preparative high-speed counter-current chromatography (HSCCC) was successfully used for the isolation and purification of flavonoid glycoside from the leaves of Siraitia grosvenori by using a two-phase-solvent system composed of ethyl acetate–n-butanol–water (4:1:5, v/v/v). kaempferol-3,7-O-α-L-dirhamnopyranoside was obtained in one-step separation and less than 5.5 h from 90 mg of crude extract from the S. grosvenori leaves. The chemical structure of this compound was identified by MS, 1H NMR, and 13C NMR. Free radical scavenging activity of kaempferol-3,7-O-α-L-dirhamnopyranoside was also evaluated and the results showed that it had good free radical scavenging activity with its IC50 value being 3.97 mg/ml.  相似文献   

18.
In this study, the influence of the application of 0.025%, 0.05% and 0.075% of Zataria multiflora Boiss. essential oil (EO) on oxidative stability of sunflower oil was examined and the EO was compared to butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) during storage at 37°C and 47°C. The main components of EO were identified as carvacrol (45.6%), p‐cymene (18.1%) and thymol (16.3%). Peroxide value (PV), anisidine value (AnV) and thiobarbituric acid (TBA) value measurement in sunflower oil showed that all concentrations of EO had a lower antioxidant effect in comparison to BHA and BHT. Samples supplemented with EO concentration of 0.075% were the most stable during storage at both temperatures (p<0.05). Furthermore, Totox value, antioxidant activity (AA), stabilization factor (F) and antioxidant power (AOP) determination confirmed efficacy of this EO as antioxidant in sunflower oil. EO also was able to reduce the stable 2,2‐diphenyl‐1‐picrylhydrazyl free radical (DPPH . ) with a 50% inhibition concentration (IC50) of 34.3 ± 0.8 µg/mL. The results indicate that EO could be used as a natural antioxidant in oils for food uses.  相似文献   

19.
《Drying Technology》2012,30(15):1763-1770
Separation and purification of phosphatidylcholine (PC) and phosphatidylinositol (PI) fractions to their utmost purity is still a challenging task industrially due to the molecular and structural complexity of lecithin molecules. The present study deals with the filtration of the PI-rich fraction followed by drying of the cake for its further purification and value addition. Filtration of the PI-rich fraction was carried out under constant pressure conditions followed by the drying of the cake in a vacuum tray dryer. The average specific cake resistance (αav) as a function of operating pressure was studied and it showed little variation with respect to the applied pressure differential. The initial solvent content in the cake after filtration was found to be in the vicinity of 1 kg solvent/kg dry solid, which was then subsequently reduced in the drying stage to 0.04 kg solvent/kg dry solid. The drying kinetics of the cake was studied at different drying temperatures in a vacuum tray dryer operated under varying degree of vacuum. The drying rate curve showed a prominent falling rate period with the effective solvent diffusivity in the range of 5.4 × 10?10 m2s?1 to 1.42 × 10?9 m2s?1within the temperature range of 40–60°C. Critical analysis of the dried PI fraction was carried out in terms of phosphatidylinositol content and color. The drying data were analyzed using various models and Das et al.'s model, the modified Henderson and Pabis model, and the Page model were found to provide the best fit sin terms of root mean square error (RMSE), chi square, and correlation coefficient (R 2).  相似文献   

20.
《分离科学与技术》2012,47(11):2297-2323
Abstract

In Alcanena (Portugal) the waste water treatment plant (WWTP) receives tannery waste, after a pretreatment for sulphides and the tanning exhaust baths have been sent to a recovery unit and the municipal waste water from Alcanena residential area. Physical, chemical, and biological treatment processes are involved, and the end products are sludge of ~71% moisture containing mainly organic matter, sulfides, iron, chromium, and other metals. The sludge is dumped, after stabilization, in a specially designed hazardous waste landfill.

In this study, tannery mixed sludge (from chemical and biological treatments) was leached and filtered. Leaching was carried out using sulfuric acid (pH 0.5) to release residual sulfides and metals from the slurry. Hydrogen sulfide (H2S) was flushed out into an oxidation trap (hypochlorite/alkaline tank) in which H2S transforms to soluble sulfate. The acidified sludge was fed into a membrane filter press where it was filtered, acid‐washed, water–washed, membrane‐squeezed, and vacuum‐dried reaching lower moisture levels (20–30%). The process cycle is approximately 101–137 min in our experiments; however, from this work, a cycle of 90 min to produce cakes with 0.9 cm thickness in the industrial scale through cutting some operational time, reaching final moisture of ~20% at the end of the dewatering cycle, can be estimated. Filtration was carried out at different feed pressure (3–5 bar) with and without diatomite precoating. The effect of different amounts of diatomite body‐feed was studied. Specific cake resistance, α, was found to increase with the increase in feed pressure and to decrease with diatomite precoating and the increased amounts of diatomite body feed. Cake washing was accomplished using 0.05 M H2SO4 (acid washing), to remove residual metals, followed by water washing, to remove cake acidity. Cake dewatering via membrane squeezing was applied using hot water (65°C), and cake moisture was dropped from ~71% before squeezing to 42% after squeezing. With vacuum application over the hot cakes, for 30 min, cake moisture decreased to ~20% for cakes with an average thickness of 0.9 cm. Cake chemical analysis showed chromium levels lower than 1000 mg/kg (the maximum Cr concentration allowed by the Portuguese legislation in a solid residue for use in agricultural soil). In addition, produced cake (without diatomite body feed) has a calorific value of 11,000 kJ/kg and accordingly it can be used as a source of energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号