共查询到13条相似文献,搜索用时 0 毫秒
1.
Previous Gestational Diabetes Increases Atherogenic Dyslipidemia in Subsequent Pregnancy and Postpartum 下载免费PDF全文
Montserrat Prados Juana A. Flores‐Le Roux David Benaiges Gemma Llauradó Juan J. Chillarón Antoni Paya Juan Pedro‐Botet 《Lipids》2018,53(4):387-392
In a cohort of women with previous gestational diabetes mellitus (GDM), we aimed to ascertain whether women with abnormal glucose tolerance 1‐year postdelivery had a more atherogenic lipid profile during and after pregnancy than those with normal glucose tolerance. A prospective cohort study with longitudinal design between January 2004 and March 2016 was conducted. Three hundred and six (56.8%) of 537 women diagnosed with GDM during the studied period attended a control visit during the first year after delivery. Of these, 112 (36.6%) had prediabetes and 16 (5.2%) had type 2 diabetes mellitus. No significant differences during pregnancy were found in total, low‐density lipoprotein, high‐density lipoprotein (HDL) cholesterol, and triacylglycerol (TAG) concentrations among the three groups. Only HDL cholesterol and TAG levels differed significantly among groups at 2 and 12 months after delivery. Logistic regression analysis revealed pregnancy HDL and glucose metabolism status to be associated with the HDL cholesterol concentration 1‐year postdelivery. Furthermore, the only independent factor associated with TAG levels 1 year after delivery was the gestational TAG concentration. In summary, an overweight multiethnic group of women with prior GDM presented a high incidence of postpartum dysglycemia (41.8%). HDL‐cholesterol and TAG levels, both components of the metabolic syndrome, differed significantly among the three study groups in the glucose‐metabolism status at 2 and 12 months after delivery. Women with previous GDM must be followed up in the postpartum period for early detection and management of lipid and glucose disorders. 相似文献
2.
The aim of the present study was to identify the effects of dehydroepiandrosterone (DHEA) on hepatic lipid metabolism parameters
and lipogenic gene mRNA expression in broiler chickens. A total of 72 1-day-old broiler chicks received a common basal diet
with DHEA added at either 0 (control), 5 or 20 mg/kg feed. In the present study, the hepatic triglyceride (TG) concentration
was significantly lower in male and female broilers that had bed administered DHEA than in control birds. In contrast, DHEA
administration caused a marked rise in the hepatic non-esterified fatty acid (NEFA) concentration in both male and female
broilers and also increased lipase (HL) activity in male broilers, while in female birds, no significant differences were
observed in HL activity. The expression of peroxisome proliferators-activated receptor α (PPARα) and carnitine palmitoyl transferase
I (CPTI) mRNA was decidedly enhanced following treatment with DHEA, and a similar tendency was also observed in the expression
of acyl-Coenzyme A oxidase 1 (ACOX1). However, no significant differences were observed in the expression of either sterol
regulatory element binding protein-1c (SREBP-1c) or acetyl CoA carboxylase (ACC) mRNA, except for a decline in the expression
of ACC in females treated with 5 mg DHEA/kg. Numerous peroxisomes without a core and an increased number of peroxisomes were
evident during morphological observations of broiler livers, in animals that had been treated with DHEA. Overall, the results
of the present study indicated that DHEA accelerated lipid catabolism by direct regulation of hepatic lipid metabolism and
by induction of relevant gene expression. 相似文献
3.
Yajun Hu Minglang Cai Huan Zhong Wuying Chu Yi Hu 《International journal of molecular sciences》2021,22(24)
Methionine restriction reduces animal lipid deposition. However, the molecular mechanism underlying how the body reacts to the condition and regulates lipid metabolism remains unknown. In this study, a feeding trial was performed on rice field eel Monopterus albus with six isonitrogenous and isoenergetic feeds that included different levels of methionine (0, 2, 4, 6, 8, and 10 g/kg). Compared with M0 (0 g/kg), the crude lipid and crude protein of M. albus increased markedly in M8 (8 g/kg) (p < 0.05), serum (total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and non-esterified free fatty acids), and hepatic contents (hepatic lipase, apolipoprotein-A, fatty acid synthetase, total cholesterol, triglyceride, and lipoprteinlipase). However, in the serum, very-low-density lipoprotein and hepatic contents (hormone-sensitive triglyceride lipase, Acetyl CoA carboxylase, carnitine palmitoyltransterase, and mirosomal triglygeride transfer protein) decreased markedly in M8 (p < 0.05). The contents of hepatic C18:2n-6, C22:6n-3, and n-3PUFA in the M8 group were significantly higher than those in M0 (p < 0.05), and the contents of lipid droplets in M8 were higher than those in M0. Compared with M0, the hepatic gcn2, eif2α, hsl, mttp, ldlrap, pparα, cpt1, and cpt2 were remarkably downregulated in M8, while srebf2, lpl, moat2, dgat2, hdlbp, srebf1, fas, fads2, me1, pfae, and icdh were markedly upregulated in M8. Moreover, hepatic SREBP1 and FAS protein expression were upregulated significantly in M8 (p < 0.01). In short, methionine restriction decreased the lipid deposition of M. albus, especially for hepatic lipid deposition, and mainly downregulated hepatic fatty acid metabolism. Besides, gcn2 could be activated under methionine restriction. 相似文献
4.
Jayasimha Rayalu Daddam Harald M. Hammon Arnulf Trscher Laura Vogel Martina Gnott Gitit Kra Yishai Levin Helga Sauerwein Maya Zachut 《International journal of molecular sciences》2021,22(6)
Phosphoproteomics is a cutting-edge technique that can be utilized to explore adipose tissue (AT) metabolism by quantifying the repertoire of phospho-peptides (PP) in AT. Dairy cows were supplemented with conjugated linoleic acid (CLA, n = 5) or a control diet (CON, n = 5) from 63 d prepartum to 63 d postpartum; cows were slaughtered at 63 d postpartum and AT was collected. We performed a quantitative phosphoproteomics analysis of subcutaneous (SC) and omental (OM) AT using nanoUPLC-MS/MS and examined the effects of CLA supplementation on the change in the phosphoproteome. A total of 5919 PP were detected in AT, and the abundance of 854 (14.4%) were differential between CON and CLA AT (p ≤ 0.05 and fold change ± 1.5). The abundance of 470 PP (7.9%) differed between OM and SC AT, and the interaction treatment vs. AT depot was significant for 205 PP (3.5% of total PP). The integrated phosphoproteome demonstrated the up- and downregulation of PP from proteins related to lipolysis and lipogenesis, and phosphorylation events in multiple pathways, including the regulation of lipolysis in adipocytes, mTOR signaling, insulin signaling, AMPK signaling, and glycolysis. The differential regulation of phosphosite on a serine residue (S777) of fatty acid synthase (FASN) in AT of CLA-supplemented cows was related to lipogenesis and with more phosphorylation sites compared to acetyl-coenzyme A synthetase (ACSS2). Increased protein phosphorylation was seen in acetyl-CoA carboxylase 1 (ACACA;8 PP), FASN (9 PP), hormone sensitive lipase (LIPE;6 PP), perilipin (PLIN;3 PP), and diacylglycerol lipase alpha (DAGLA;1 PP) in CLA vs. CON AT. The relative gene expression in the SC and OM AT revealed an increase in LIPE and FASN in CLA compared to CON AT. In addition, the expression of DAGLA, which is a lipid metabolism enzyme related to the endocannabinoid system, was 1.6-fold higher in CLA vs. CON AT, and the expression of the cannabinoid receptor CNR1 was reduced in CLA vs. CON AT. Immunoblots of SC and OM AT showed an increased abundance of FASN and a lower abundance of CB1 in CLA vs. CON. This study presents a complete map of the SC and the OM AT phosphoproteome in dairy cows following CLA supplementation and discloses many unknown phosphorylation sites, suggestive of increased lipid turnover in AT, for further functional investigation. 相似文献
5.
Christina Wolf Nicole Gredig Susanne E. Ulbrich Michael Kreuzer Joel Berard Katrin Giller 《Lipids》2019,54(9):503-517
Dietary polyunsaturated fatty acids (PUFA), especially n-3 and n-6 fatty acids (FA), play an important role in the regulation of FA metabolism in all mammals. However, FA metabolism differs between different organs, suggesting a distinct partitioning of highly relevant FA. For the present study in cattle, a novel technology was applied to overcome rumen biohydrogenation of dietary unsaturated FA. Angus heifers were fed a straw-based diet supplemented for 8 weeks with 450 g/day of rumen-protected oil, either from fish (FO) or sunflower (SO). The FA composition in blood and five important organs, namely heart, kidney, liver, lung, and spleen, was examined. In blood, proportions of polyunsaturated FA were increased by supplementing FO compared to SO. The largest increase of eicosapentaenoic acid (EPA) proportion was found with FO instead of SO in the kidney, the lowest in the lung. Docosahexaenoic acid (DHA) was increased more in the liver than in kidney, lung, and spleen. The heart incorporated seven times more EPA than DHA, which is more than all other organs and described here for the first time in ruminants. In addition, the heart had the highest proportions of α-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) of all organs. The proportions of polyunsaturated FA in the lung and spleen were exceptionally low compared to heart, liver, and kidney. In conclusion, it was shown that the response to FO in the distribution of dietary n-3 FA was organ-specific while proportions of n-6 FA were quite inert with respect to the type of oil supplemented. 相似文献
6.
Alberto Canfrn-Duque
scar Pastor David García-Seisdedos Yessenia L. Molina Bohdan Babiy Milagros Lerma Carmen Snchez-Castellano Javier Martínez-Botas Diego Gmez-Coronado Miguel A. Lasuncin Alfonso J. Cruz-Jentoft Rebeca Busto 《International journal of molecular sciences》2021,22(8)
Atypical or second-generation antipsychotics are used in the treatment of psychosis and behavioral problems in older persons with dementia. However, these pharmaceutical drugs are associated with an increased risk of stroke in such patients. In this study, we evaluated the effects of risperidone treatment on phospholipid and sphingolipid composition and lipid raft function in peripheral blood mononuclear cells (PBMCs) of older patients (mean age >88 years). The results showed that the levels of dihydroceramides, very-long-chain ceramides, and lysophosphatidylcholines decreased in PBMCs of the risperidone-treated group compared with untreated controls. These findings were confirmed by in vitro assays using human THP-1 monocytes. The reduction in the levels of very-long-chain ceramides and dihydroceramides could be due to the decrease in the expression of fatty acid elongase 3, as observed in THP-1 monocytes. Moreover, risperidone disrupted lipid raft domains in the plasma membrane of PBMCs. These results indicated that risperidone alters phospholipid and sphingolipid composition and lipid raft domains in PBMCs of older patients, potentially affecting multiple signaling pathways associated with these membrane domains. 相似文献
7.
8.
9.
Abdulbaset Zidane Shirif Sanja Kova
evi Jelena Brklja
i Ana Teofilovi Ivana Elakovi Ana Djordjevic Gordana Mati 《International journal of molecular sciences》2021,22(13)
The modern lifestyle brings both excessive fructose consumption and daily exposure to stress which could lead to metabolic disturbances and type 2 diabetes. Muscles are important points of glucose and lipid metabolism, with a crucial role in the maintenance of systemic energy homeostasis. We investigated whether 9-week fructose-enriched diet, with and without exposure to 4-week unpredictable stress, disturbs insulin signaling in the skeletal muscle of male rats and evaluated potential contributory roles of muscle lipid metabolism, glucocorticoid signaling and inflammation. The combination of fructose-enriched diet and stress increased peroxisome proliferator-activated receptors-α and -δ and stimulated lipid uptake, lipolysis and β-oxidation in the muscle of fructose-fed stressed rats. Combination of treatment also decreased systemic insulin sensitivity judged by lower R-QUICKI, and lowered muscle protein content and stimulatory phosphorylations of insulin receptor supstrate-1 and Akt, as well as the level of 11β-hydroxysteroid dehydrogenase type 1 and glucocorticoid receptor. At the same time, increased levels of protein tyrosine phosphatase-1B, nuclear factor-κB, tumor necrosis factor-α, were observed in the muscle of fructose-fed stressed rats. Based on these results, we propose that decreased glucocorticoid signaling in the skeletal muscle can make a setting for lipid-induced inflammation and the development of insulin resistance in fructose-fed stressed rats. 相似文献
10.
Magdalena J. M. Marschall Robert Ringseis Denise K. Gessner Sarah M. Grundmann Erika Most Gaiping Wen Garima Maheshwari Holger Zorn Klaus Eder 《International journal of molecular sciences》2021,22(10)
Conflicting reports exist with regard to the effect of ecdysterone, the predominating representative of steroid hormones in insects and plants, on hepatic and plasma lipid concentrations in different rodent models of obesity, fatty liver, and diabetes, indicating that the effect is dependent on the rodent model used. Here, the hypothesis was tested for the first time that ecdysterone causes lipid-lowering effects in genetically obese Zucker rats. To test this hypothesis, two groups of male obese Zucker rats (n = 8) were fed a nutrient-adequate diet supplemented without or with 0.5 g ecdysterone per kg diet. To study further if ecdysterone is capable of alleviating the strong lipid-synthetic activity in the liver of obese Zucker rats, the study included also two groups of male lean Zucker rats (n = 8) which also received either the ecdysterone-supplemented or the non-supplemented diet. While hepatic and plasma concentrations of triglycerides and cholesterol were markedly higher in the obese compared to the lean rats (p < 0.05), hepatic and plasma triglyceride and cholesterol concentrations did not differ between rats of the same genotype fed the diets without or with ecdysterone. In conclusion, the present study clearly shows that ecdysterone supplementation does not exhibit lipid-lowering actions in the liver and plasma of lean and obese Zucker rats. 相似文献
11.
Lorne J. Lebrun Gaëtan Pallot Maxime Nguyen Annabelle Tavernier Alois Dusuel Thomas Pilot Valrie Deckert Isabelle Dugail Naig Le Guern Jean-Paul Pais De Barros Anissa Benkhaled Hlne Choubley Laurent Lagrost David Masson Thomas Gautier Jacques Grober 《International journal of molecular sciences》2022,23(21)
Bacterial lipopolysaccharides (LPS, endotoxins) are found in high amounts in the gut lumen. LPS can cross the gut barrier and pass into the blood (endotoxemia), leading to low-grade inflammation, a common scheme in metabolic diseases. Phospholipid transfer protein (PLTP) can transfer circulating LPS to plasma lipoproteins, thereby promoting its detoxification. However, the impact of PLTP on the metabolic fate and biological effects of gut-derived LPS is unknown. This study aimed to investigate the influence of PLTP on low-grade inflammation, obesity and insulin resistance in relationship with LPS intestinal translocation and metabolic endotoxemia. Wild-type (WT) mice were compared with Pltp-deficient mice (Pltp-KO) after a 4-month high-fat (HF) diet or oral administration of labeled LPS. On a HF diet, Pltp-KO mice showed increased weight gain, adiposity, insulin resistance, lipid abnormalities and inflammation, together with a higher exposure to endotoxemia compared to WT mice. After oral administration of LPS, PLTP deficiency led to increased intestinal translocation and decreased association of LPS to lipoproteins, together with an altered catabolism of triglyceride-rich lipoproteins (TRL). Our results show that PLTP, by modulating the intestinal translocation of LPS and plasma processing of TRL-bound LPS, has a major impact on low-grade inflammation and the onset of diet-induced metabolic disorders. 相似文献
12.
Ke Li Tiejun Feng Leyan Liu Hongmei Liu Kaixun Huang Jun Zhou 《International journal of molecular sciences》2021,22(16)
Selenoprotein T (SELENOT, SelT), a thioredoxin-like enzyme, exerts an essential oxidoreductase activity in the endoplasmic reticulum. However, its precise function remains unknown. To gain more understanding of SELENOT function, a conventional global Selenot knockout (KO) mouse model was constructed for the first time using the CRISPR/Cas9 technique. Deletion of SELENOT caused male sterility, reduced size/body weight, lower fed and/or fasting blood glucose levels and lower fasting serum insulin levels, and improved blood lipid profile. Tandem mass tag (TMT) proteomics analysis was conducted to explore the differentially expressed proteins (DEPs) in the liver of male mice, revealing 60 up-regulated and 94 down-regulated DEPs in KO mice. The proteomic results were validated by western blot of three selected DEPs. The elevated expression of Glycogen [starch] synthase, liver (Gys2) is consistent with the hypoglycemic phenotype in KO mice. Furthermore, the bioinformatics analysis showed that Selenot-KO-induced DEPs were mainly related to lipid metabolism, cancer, peroxisome proliferator-activated receptor (PPAR) signaling pathway, complement and coagulation cascades, and protein digestion and absorption. Overall, these findings provide a holistic perspective into SELENOT function and novel insights into the role of SELENOT in glucose and lipid metabolism, and thus, enhance our understanding of SELENOT function. 相似文献
13.
Shafaque Sehar Muhammad Faheem Adil Muhammad Zeeshan Paul Holford Fangbin Cao Feibo Wu Yizhou Wang 《International journal of molecular sciences》2021,22(23)
Keeping the significance of potassium (K) nutrition in focus, this study explores the genotypic responses of two wild Tibetan barley genotypes (drought tolerant XZ5 and drought sensitive XZ54) and one drought tolerant barley cv. Tadmor, under the exposure of polyethylene glycol-induced drought stress. The results revealed that drought and K deprivation attenuated overall plant growth in all the tested genotypes; however, XZ5 was least affected due to its ability to retain K in its tissues which could be attributed to the smallest reductions of photosynthetic parameters, relative chlorophyll contents and the lowest Na+/K+ ratios in all treatments. Our results also indicate that higher H+/K+-ATPase activity (enhancement of 1.6 and 1.3-fold for shoot; 1.4 and 2.5-fold for root), higher shoot K+ (2 and 2.3-fold) and Ca2+ content (1.5 and 1.7-fold), better maintenance of turgor pressure by osmolyte accumulation and enhanced antioxidative performance to scavenge ROS, ultimately suppress lipid peroxidation (in shoots: 4% and 35%; in roots 4% and 20% less) and bestow higher tolerance to XZ5 against drought stress in comparison with Tadmor and XZ54, respectively. Conclusively, this study adds further evidence to support the concept that Tibetan wild barley genotypes that utilize K efficiently could serve as a valuable genetic resource for the provision of genes for improved K metabolism in addition to those for combating drought stress, thereby enabling the development of elite barley lines better tolerant of abiotic stresses. 相似文献